Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | 남대현 | - |
dc.contributor.author | Soohyun Go | - |
dc.date.accessioned | 2023-03-22T19:56:56Z | - |
dc.date.available | 2023-03-23T06:00:24Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.11750/45726 | - |
dc.identifier.uri | http://dgist.dcollection.net/common/orgView/200000656444 | - |
dc.description | Carbon Dioxide Reduction Reaction (CO2RR), 이산화탄소 환원 | - |
dc.description.abstract | Electrochemical CO2 Reduction Reaction (CO2RR) utilized as a next-generation energy solution by re-placing CO2 with a high value-added compound. Future energy and environmental issues related to fossil fuel consumption are also addressed with CO2RR as an energy storage method. To convert CO2 into highly effi-cient chemicals, the electrocatalysts used in electrochemical processes need to be properly organized and de-signed. In previous studies, the phase composition of bimetallic alloys was controlled by adjusting the ratio of the Cu and Sn metal precursors. Although it was possible to fabricate Cu-Sn bimetallic materials with vari-ous morphologies, there was a limit to controlling the Cu-Sn stoichiometric range since most Cu3Sn and Cu6Sn5 were synthesized. In this study, we investigated the phase control effect of different Cu-Sn bimetallic active materials by fabricating materials based on thermodynamic calculations and discovered the relation-ship between optimized materials and properties in CO2RR. This effect was expected to induce selective reac-tions and direct reaction pathways toward specific products. Several thermodynamic processes, such as the Ellingham diagram, Binary phase diagram, and Sn vapor pressure were calculated and considered to produce different phases of Cu-Sn alloys. Escaping from adjusting the amount of metal precursor, we fabricated Cu-Sn alloy phases by controlling local Sn vapor pressure during Cu-Sn alloy formation. To control local Sn vapor pressure, we utilized carbon as a support matrix and separated the distribution of Cu and Sn precursors within core/shell nanofibers by applying co-axial electrospinning and stepwise calcination. This allows the construction of different phase alloys from the same molar composition ratio by controlling the environment as compared to modifying the composition ratio of each metal. These elements form alloys of different phases Cu3Sn, Cu6Sn5 and Cu41Sn11 from the same molar ra-tio of metal precursors. Based on Cu3Sn, we find Cu6Sn5, a Sn-rich Cu-Sn alloy with 58.56% a faradaic effi-ciency (F.E) at -2.98V (vs RHE) in HCOOH and a Cu41Sn11, Cu-rich Cu-Sn alloy, with 43% F.E at -4.18V (vs RHE) in CH4. DFT calculations confirmed that different reaction pathways are induced for specific CO2RR products. We found that the stoichiometry of the Cu-Sn bimetallic alloys controls the binding energies of the reactive intermediates at the Cu-Sn alloy surface and thereby tunes the CO2RR products. We report a new Cu-Sn phase control methodology by engineering the local environment to control the Sn vapor pressure during the formation of Cu-Sn bimetallic alloys. For predictive Cu-Sn alloy fabrication, we designed a fabrication window by thermochemical calcination of Gibbs free energy for alloy formation and related processing parameters (Cu:Sn ratio, temperature, and Sn vapor pressure). We constructed a ther-modynamically based window and showed that alloys of different phases can be formed from the same mo-lar composition ratio, which has not been reported in previous studies. It is expected that various alloy com-positions will be produced that allow selective reaction induction and target specific products in the carbon dioxide reduction reaction. |
- |
dc.description.abstract | 전기화학적 이산화탄소 환원 반응은 이산화탄소를 고부가가치 화합물로 전환하는 차세대 에너지 솔루션으로 인식되고 있습니다. 따라서, 전기화학 촉매는 이산화탄소를 고효율 화학물질로 전환하기 위해 이상적으로 구상하고 설계되어야 합니다. 이 연구에서는 이산화탄소 환원 반응에서 C2+ 생성물을 생성하는 것으로 알려진 유일한 금속인 구리와 산업에서 사용되는 포름산에 대해 선택성이 우수한 주석이 연구의 전기화학 전극 촉매 설계에 선택되었습니다. 각 금속의 특성을 시너지 효과로 나타내는 구리-주석 기반의 금속 합금 촉매를 설계합니다. 구리-주석 합금상은 각 금속 전구체의 비율을 조정함으로써 제어되지만, 특정 합금상만이 형성되는 것으로 보고되었습니다. 따라서 본 연구에서는 구리-주석의 다양한 합금 촉매의 형성을 위해 주석의 증기압을 제어하고 국소 환경 설계를 통해 구리-주석 상을 제어하는 새로운 방법론을 보고합니다. 예측 합금은 깁스 자유 에너지 및 합금 형성과 관련된 공정 매개변수(금속 전구체 비율, 온도, 주석 증기압, 열화학 소성 등)를 사용하여 제조 창을 설계함으로써 제작되었습니다. 탄소를 담지체로 활용하여 주석의 증기압을 제어하고, 구리과 주석의 분포를 동축 전기방사 및 코어/쉘 전기방사를 통해 분리한 후 단계적으로 소성 하였습니다. 그 결과, 이전의 연구에서는 제공되지 않았던, 상이한 조성의 구리-주석 합금상이 형성되었습니다. 이들의 이산화탄소 환원 반응 결과로서, 다양한 생성물의 형성뿐만 아니라 선택성 경향의 변화도 발견되었습니다. 포름산 생성물의 선택성은 주석 함량이 증가함에 따라 나타나며, 기존의 주석에서는 발견되지 않은 메탄의 선택성은 구리 함량이 증가함에 따라 발생합니다. 이를 통해 각 금속의 조성비를 비를 변경하는 대신 환경을 제어하여 동일한 조성비에서 서로 다른 상의 합금을 구성할 수 있음을 보여줍니다. 따라서 이 효과는 이산화탄소 환원 반응에서 특정 생성물에 대한 선택적 반응 유도 및 경로 제어를 위한 다양한 합금 촉매의 제작을 가능하게 할 것으로 기대됩니다. | - |
dc.description.tableofcontents | Abstract i List of contents ii List of figures vi Ⅰ. Introduction 1 1.1 Electrochemical Carbon Dioxide Reduction Reaction (CO2RR) 1 1.2 Cu and Sn Electrocatalysts for CO2RR 3 1.2.1 Cu-Based Electrocatalysts 3 1.2.2 Sn-Based Electrocatalysts 4 1.2.3 Characteristics of Oxidation State Electrocatalysts 5 1.3 Electrocatalyst Development and Application 6 1.3.1 Cu-Sn Bimetallic Electrocatalysts 6 1.3.2 Limitation of previous studies and strategies of study 9 Ⅱ. Experimental 11 2.1 Materials and Chemicals 11 2.2 Catalysts Synthesis Method 12 2.2.1 Fabrication of Nanofibers via Electrospinning 12 2.2.2 Calcination of Cu-Sn/Carbon Nanofiber 13 2.2.3 Electrochemical Performance Measurement 13 2.3 Instrument and Operation Condition 15 Ⅲ. Results and Discussion 16 3.1 Synthesis of Cu and Sn Monometallic Electrocatalyst 16 3.1.1 Thermodynamic-based Design the Calcination Environment 16 3.1.2 Fabricate Cu/Sn Nanofibers through Electrospinning 18 3.1.3 Characterization of Cu and Sn Monometallic Electrocatalysts 20 3.1.4 CO2RR Measurement of Synthesized Cu and Sn Monometallic Catalysts 30 3.2 Synthesis of Cu-Sn Bimetallic Electrocatalysts 32 3.2.1 Thermodynamic-based Design the Structural Design 32 3.2.2 Strategy for Cu-Sn Bimetallic Electrocatalysts Fabrication 36 3.2.3 Characterization of Cu-Sn Bimetallic Electrocatalysts 39 3.2.4 CO2RR Measurement of Synthesized Cu-Sn Bimetallic Catalysts 53 Ⅳ. Conclusion 56 Reference 58 |
- |
dc.format.extent | 62 | - |
dc.language | eng | - |
dc.publisher | DGIST | - |
dc.title | Thermodynamic-based Cu-Sn Bimetallic Phase Control for CO2 Reduction Electrocatalysts | - |
dc.type | Thesis | - |
dc.identifier.doi | 10.22677/THESIS.200000656444 | - |
dc.description.degree | Master | - |
dc.contributor.department | Department of Energy Science and Engineering | - |
dc.contributor.coadvisor | Jongmin Choi | - |
dc.date.awarded | 2023-02-01 | - |
dc.publisher.location | Daegu | - |
dc.description.database | dCollection | - |
dc.citation | XT.EM 고56 202302 | - |
dc.date.accepted | 2023-03-21 | - |
dc.contributor.alternativeDepartment | 에너지공학과 | - |
dc.subject.keyword | Carbon Dioxide Reduction Reaction (CO2RR) | - |
dc.subject.keyword | 이산화탄소 환원 | - |
dc.contributor.affiliatedAuthor | Soohyun Go | - |
dc.contributor.affiliatedAuthor | Dae-Hyun Nam | - |
dc.contributor.affiliatedAuthor | Jongmin Choi | - |
dc.contributor.alternativeName | 고수현 | - |
dc.contributor.alternativeName | Dae-Hyun Nam | - |
dc.contributor.alternativeName | 최종민 | - |
There are no files associated with this item.