Detail View

Cell activity manipulation through optimizing piezoelectricity and polarization of diphenylalanine peptide nanotube-based nanocomposite
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Guo, Huiling -
dc.contributor.author Lee, Dong-Min -
dc.contributor.author Zhao, Pin -
dc.contributor.author Kim, So-Hee -
dc.contributor.author Hyun, Inah -
dc.contributor.author Park, Byung-Joon -
dc.contributor.author Lee, Ju-Hyuck -
dc.contributor.author Sun, Huajun -
dc.contributor.author Kim, Sang-Woo -
dc.date.accessioned 2023-07-04T16:10:24Z -
dc.date.available 2023-07-04T16:10:24Z -
dc.date.created 2023-06-01 -
dc.date.issued 2023-07 -
dc.identifier.issn 1385-8947 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46095 -
dc.description.abstract Here we propose a material design for nanocomposites of self-assembled diphenylalanine (FF) nanotubes with bioresorbable polymer matrices to achieve a flexible and mechanically durable bio-piezoelectric nanogenerator (bio-PENG). The piezoelectric property of the nanocomposite membranes demonstrates a normal-like distribution in accordance with Young's modulus of the polymer matrices. Attributed to the high conformability between polyvinyl alcohol (PLA) and FF nanotubes, the PLA-based nanocomposite bio-PENG exhibits high electrical output performance, reaching an output voltage of 2.8 V and power density of 2.6 μW cm−2. Moreover, the bio-PENG shows stable energy-generating performance for over 1000 operating cycles. Benefiting from the high piezoelectric property, the nanocomposite can manipulate cell activities including alignment and proliferation. The results of the simulation using the finite element method (FEM) confirm that the nanocomposite can generate piezoelectricity through mechanical strain caused by free migration of cells. In vitro demonstration shows that cell migration-induced piezoelectricity allows for the manipulation of cell alignment and proliferation. Thus, our material design of FF nanotube-based nanocomposites presents a promising option for bioresorbable energy harvesters that will be widely available in biomedical applications. © 2023 -
dc.language English -
dc.publisher Elsevier B.V. -
dc.title Cell activity manipulation through optimizing piezoelectricity and polarization of diphenylalanine peptide nanotube-based nanocomposite -
dc.type Article -
dc.identifier.doi 10.1016/j.cej.2023.143597 -
dc.identifier.wosid 001009539200001 -
dc.identifier.scopusid 2-s2.0-85159666621 -
dc.identifier.bibliographicCitation Guo, Huiling. (2023-07). Cell activity manipulation through optimizing piezoelectricity and polarization of diphenylalanine peptide nanotube-based nanocomposite. Chemical Engineering Journal, 468. doi: 10.1016/j.cej.2023.143597 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Energy harvesting -
dc.subject.keywordAuthor Piezoelectricity -
dc.subject.keywordAuthor Diphenylalanine -
dc.subject.keywordAuthor Nanocomposite -
dc.subject.keywordAuthor Cell alignment -
dc.subject.keywordAuthor Cell proliferation -
dc.citation.title Chemical Engineering Journal -
dc.citation.volume 468 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering -
dc.relation.journalWebOfScienceCategory Engineering, Environmental; Engineering, Chemical -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이주혁
Lee, Ju-Hyuck이주혁

Department of Energy Science and Engineering

read more

Total Views & Downloads