Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Dongha -
dc.contributor.author Jeon, Yuri -
dc.contributor.author MacManus-Driscoll, Judith Louise -
dc.contributor.author Lee, Shinbuhm -
dc.date.accessioned 2023-07-20T10:40:16Z -
dc.date.available 2023-07-20T10:40:16Z -
dc.date.created 2023-05-25 -
dc.date.issued 2023-08 -
dc.identifier.issn 1616-301X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46214 -
dc.description.abstract Gas sponges capable of absorbing, storing, and releasing ions in a reversible manner are in high demand for advanced electronics, energy devices, and sensors. Here, it is shown that brownmillerite BaInO2.5 epitaxial films exhibit the capability to act as solid-state catalytic hydrogen sponges at a remarkably low temperature (≈100 °C). Compared to sintered pellets with random crystallographic orientations and many defects, BaInO2.5 epitaxial films give three orders of magnitude higher conductivity of hydrogen ions, which can be linked to the presence of well-ordered 1D channels and lack of grain boundaries and other defects. Using scanning transmission electron microscopy, it is shown that hydrogen ions can be stored near InO4 tetrahedral layers of brownmillerite without destroying the parent framework. The high performance and reproducibility of the BaInO2.5 epitaxial films coupled with ultralow power consumption make them ideal candidates for neuromorphic devices and beyond. © 2023 Wiley-VCH GmbH. -
dc.language English -
dc.publisher John Wiley & Sons Ltd. -
dc.title Solid-State Catalytic Hydrogen Sponge Effects in BaInO2.5 Epitaxial Films -
dc.type Article -
dc.identifier.doi 10.1002/adfm.202300819 -
dc.identifier.wosid 000981451600001 -
dc.identifier.scopusid 2-s2.0-85158000928 -
dc.identifier.bibliographicCitation Advanced Functional Materials, v.33, no.32 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor brownmillerite BaInO2 5 -
dc.subject.keywordAuthor catalysts -
dc.subject.keywordAuthor epitaxy -
dc.subject.keywordAuthor high hydrogen ion conductivity -
dc.subject.keywordAuthor solid-state hydrogen sponges -
dc.subject.keywordPlus STABILIZATION -
dc.subject.keywordPlus OXYGEN -
dc.subject.keywordPlus TRANSFORMATION -
dc.subject.keywordPlus CONDUCTION -
dc.citation.number 32 -
dc.citation.title Advanced Functional Materials -
dc.citation.volume 33 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Multifunctional films and nanostructures Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE