Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Tahir, Zeeshan -
dc.contributor.author Jung, Jin-Woo -
dc.contributor.author Rashid, Mamoon Ur -
dc.contributor.author Kim, Sungdo -
dc.contributor.author Dang, Dinh Khoi -
dc.contributor.author Kang, Jang-Won -
dc.contributor.author Cho, Chang-Hee -
dc.contributor.author Jang, Joon I. -
dc.contributor.author Kim, Yong Soo -
dc.date.accessioned 2023-12-18T22:10:21Z -
dc.date.available 2023-12-18T22:10:21Z -
dc.date.created 2023-11-22 -
dc.date.issued 2023-11 -
dc.identifier.issn 2192-8606 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46690 -
dc.description.abstract Controlling coherent light-matter interactions in semiconductor microcavities is at the heart of the next-generation solid-state polaritonic devices. Organic-inorganic hybrid perovskites are potential materials for room-temperature polaritonics owing to their high exciton oscillator strengths and large exciton binding energies. Herein, we report on strong exciton-photon coupling in the micro-platelet and micro-ribbon shaped methylammonium lead bromide single crystals. Owing to high crystallinity and large refractive index, the as-grown perovskite microcrystals serve as self-hybridized optical microcavities along different orientations due to their distinct physical dimensionalities. In this regard, the perovskite micro-platelet forms a simple Fabry-Perot microcavity in out-of-plane orientation, while the micro-ribbon functions as a Fabry-Perot type waveguide microcavity within the plane of the perovskite sample. Consequently, excitons in these microcavities strongly interact with their corresponding uncoupled cavity modes, yielding multimode exciton-polaritons with Rabi splitting energies ∼205 and 235 meV for micro-platelet and micro-ribbon geometry, respectively. Furthermore, micro-ribbon geometry displays Young's double-slit-like interference patterns, which together with the numerical simulation readily reveals the parity and the mode order of the uncoupled cavity modes. Thus, our results not only shed light on strong exciton-photon coupling in various morphologies of methylammonium lead bromide microcrystals but also open an avenue for advanced polaritonic devices. © 2023 the author(s), published by De Gruyter, Berlin/Boston 2023. -
dc.language English -
dc.publisher De Gruyter -
dc.title Strong exciton-photon coupling in self-hybridized organic-inorganic lead halide perovskite microcavities -
dc.type Article -
dc.identifier.doi 10.1515/nanoph-2023-0366 -
dc.identifier.wosid 001100812900001 -
dc.identifier.scopusid 2-s2.0-85175960997 -
dc.identifier.bibliographicCitation Nanophotonics, v.12, no.23, pp.4297 - 4306 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor strong coupling -
dc.subject.keywordAuthor exciton-polaritons -
dc.subject.keywordAuthor self-hybridized optical microcavities -
dc.subject.keywordAuthor organic-inorganic lead halide perovskites -
dc.citation.endPage 4306 -
dc.citation.number 23 -
dc.citation.startPage 4297 -
dc.citation.title Nanophotonics -
dc.citation.volume 12 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science; Optics; Physics -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied -
dc.type.docType Article -
Files in This Item:
001100812900001.pdf

001100812900001.pdf

기타 데이터 / 3.18 MB / Adobe PDF download
Appears in Collections:
Department of Physics and Chemistry Future Semiconductor Nanophotonics Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE