Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Ji-Yong -
dc.contributor.author Ahn, Heh Sang -
dc.contributor.author Kim, Intae -
dc.contributor.author Hong, Deokgi -
dc.contributor.author Lee, Taemin -
dc.contributor.author Jo, Jaeyeon -
dc.contributor.author Kim, Hyeontae -
dc.contributor.author Kwak, Min Kyung -
dc.contributor.author Kim, Hyoung Gyun -
dc.contributor.author Kang, Geosan -
dc.contributor.author Go, Soohyun -
dc.contributor.author Ryu, Wook Ha -
dc.contributor.author Lee, Gun-Do -
dc.contributor.author Kim, Miyoung -
dc.contributor.author Nam, Dae-Hyun -
dc.contributor.author Park, Eun Soo -
dc.contributor.author Joo, Young-Chang -
dc.date.accessioned 2023-12-28T17:40:13Z -
dc.date.available 2023-12-28T17:40:13Z -
dc.date.created 2023-12-18 -
dc.date.issued ACCEPT -
dc.identifier.issn 2731-0582 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/47513 -
dc.description.abstract Alloying of metals can be used to optimize intermediate binding during electrocatalysis but challenges remain in overcoming thermodynamic atomic miscibility in alloys. Here we report a coordination-controlled metal alloy in which copper clusters are spatially dispersed in a crystalline silver lattice to promote the electrochemical reduction of CO2 to ethanol. The synergistic interactions between Cu–Cu sites and Cu–Ag interfaces achieve highly selective hydrocarbon and oxygenate production by strengthening and diversifying the binding of *CO intermediates on terrace and defect sites. To control atomic coordinates beyond the miscibility limit and optimize the catalyst microstructure, sacrificial elements are incorporated with thermodynamically guided compositions to form intermetallic compounds. The sacrificial elements are then selectively dealloyed. Using a membrane electrode assembly, ethylene-selective production on copper catalysts (Faradaic efficiency, 69.6 ± 1.3%; full cell efficiency, 23.5%) is steered to ethanol-selective production on the supersaturated Ag–Cu solid-solution catalyst (Faradaic efficiency, 40.4 ± 2.4%; full cell efficiency, 14.4%). Metallurgy-designed catalyst fabrication enables the efficient chemical manufacturing of either hydrocarbons or oxygenates and offers guidelines for catalyst design principles. [Figure not available: see fulltext.]. © 2023, The Author(s), under exclusive licence to Springer Nature Limited. -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Selective hydrocarbon or oxygenate production in CO2 electroreduction over metallurgical alloy catalysts -
dc.type Article -
dc.identifier.doi 10.1038/s44160-023-00449-6 -
dc.identifier.wosid 001135940200002 -
dc.identifier.scopusid 2-s2.0-85178491524 -
dc.identifier.bibliographicCitation Nature Synthesis -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus TOTAL-ENERGY CALCULATIONS -
dc.subject.keywordPlus CU ALLOYS -
dc.subject.keywordPlus REDUCTION -
dc.subject.keywordPlus MECHANISM -
dc.subject.keywordPlus AL -
dc.citation.title Nature Synthesis -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Renewable Energy Conversion Materials Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE