Detail View

Dual Adaptive Data Augmentation for 3D Object Detection
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lee, Joohyun -
dc.contributor.author Lee, Jin-Hee -
dc.contributor.author Lee, Jae-Keun -
dc.contributor.author Kim, Je-Seok -
dc.contributor.author Kwon, Soon -
dc.contributor.author Kim, Sangdong -
dc.date.accessioned 2024-01-22T18:40:11Z -
dc.date.available 2024-01-22T18:40:11Z -
dc.date.created 2024-01-17 -
dc.date.issued 2023-10-13 -
dc.identifier.isbn 9798350313277 -
dc.identifier.issn 2162-1241 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/47642 -
dc.description.abstract This paper proposes Dual Adaptive Data Augmentation (DADA) method for 3D object detection. Training deep learning models requires large amounts of data, which is time-consuming and expensive. To address this challenge, data augmentation methods have been proposed to generate augmented objects. However, conventional methods rely on fixed parameters and ignore scene and object characteristics. To address these limitations, we propose DADA, which consists of two modules: Scene-based ADA and Density-based ADA. Scene-based ADA adjusts augmented objects based on the distribution of Ground Truth (GT) objects in each scene, allowing augmentation to focus on sparse scenes with fewer GT objects while keeping overall data volume. Density-based ADA utilizes LiDAR characteristics to apply different sampling methods, generating diverse augmented objects based on object density. Experiment results show considerable improvement in performance on the KITTI and ONCE datasets. © 2023 IEEE. -
dc.language English -
dc.publisher 한국통신학회 (The Korean Institute of Communications and Information Sciences, KICS) -
dc.title Dual Adaptive Data Augmentation for 3D Object Detection -
dc.type Conference Paper -
dc.identifier.doi 10.1109/ICTC58733.2023.10393861 -
dc.identifier.scopusid 2-s2.0-85184582737 -
dc.identifier.bibliographicCitation Lee, Joohyun. (2023-10-13). Dual Adaptive Data Augmentation for 3D Object Detection. International Conference on Information and Communication Technology Convergence, ICTC 2023, 1732–1737. doi: 10.1109/ICTC58733.2023.10393861 -
dc.identifier.url https://2023.ictc.org/program_proceeding -
dc.citation.conferencePlace KO -
dc.citation.conferencePlace 제주 -
dc.citation.endPage 1737 -
dc.citation.startPage 1732 -
dc.citation.title International Conference on Information and Communication Technology Convergence, ICTC 2023 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김제석
Kim, Je-Seok김제석

Division of Mobility Technology

read more

Total Views & Downloads