Detail View

Re-VoxelDet: Rethinking Neck and Head Architectures for High-Performance Voxel-based 3D Detection
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lee, Jae-Keun -
dc.contributor.author Lee, Jin-Hee -
dc.contributor.author Lee, Joohyun -
dc.contributor.author Kwon, Soon -
dc.contributor.author Jung, Heechul -
dc.date.accessioned 2024-01-22T19:10:11Z -
dc.date.available 2024-01-22T19:10:11Z -
dc.date.created 2024-01-02 -
dc.date.issued 2024-01-06 -
dc.identifier.isbn 9798350318920 -
dc.identifier.issn 2642-9381 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/47643 -
dc.description.abstract Currently, widely employed LiDAR-based 3D object detectors adopt grid-based approaches to efficiently handle sparse point clouds. However, during this process, the down-sampled features inevitably lose spatial information, which can hinder the detectors from accurately predicting the location and size of objects. To address this issue, previous researches proposed sophisticatedly designed neck and head modules to effectively compensate for information loss. Inspired by the core insights of previous studies, we propose a novel voxel-based 3D object detector, named as Re-VoxelDet, which combines three distinct components to achieve both good detection capability and real-time performance. First, in order to learn features from diverse perspectives without additional computational costs during inference, we introduce Multi-view Voxel Backbone (MVBackbone). Second, to effectively compensate for abundant spatial and strong semantic information, we design Hierarchical Voxel-guided Auxiliary Neck (HVANeck), which attentively integrate hierarchically generated voxel-wise features with RPN blocks. Third, we present Rotation-based Group Head (RGHead), a simple yet effective head module that is designed with two groups according to the heading direction and aspect ratio of the objects. Through extensive experiments on the Argoverse2, nuScenes, and Waymo Open Dataset, we demonstrate the effectiveness of our approach. Our results significantly outperform existing state-of-the-art methods. We plan to release our model and code in the near future. -
dc.language English -
dc.publisher Computer Vision Foundation, IEEE Computer Society -
dc.relation.ispartof Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) -
dc.title Re-VoxelDet: Rethinking Neck and Head Architectures for High-Performance Voxel-based 3D Detection -
dc.type Conference Paper -
dc.identifier.doi 10.1109/WACV57701.2024.00733 -
dc.identifier.wosid 001222964607062 -
dc.identifier.scopusid 2-s2.0-85191987475 -
dc.identifier.bibliographicCitation Lee, Jae-Keun. (2024-01-06). Re-VoxelDet: Rethinking Neck and Head Architectures for High-Performance Voxel-based 3D Detection. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024), 7503–7512. doi: 10.1109/WACV57701.2024.00733 -
dc.identifier.url https://openaccess.thecvf.com/content/WACV2024/html/Lee_Re-VoxelDet_Rethinking_Neck_and_Head_Architectures_for_High-Performance_Voxel-Based_3D_WACV_2024_paper.html -
dc.citation.conferenceDate 2024-01-04 -
dc.citation.conferencePlace US -
dc.citation.conferencePlace Waikoloa -
dc.citation.endPage 7512 -
dc.citation.startPage 7503 -
dc.citation.title IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024) -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

권순
Kwon, Soon권순

Division of Mobility Technology

read more

Total Views & Downloads