Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Dongha -
dc.contributor.author Jeon, Jingyeong -
dc.contributor.author Park, Joon Deok -
dc.contributor.author Sun, Xiao-Guang -
dc.contributor.author Gao, Xiang -
dc.contributor.author Lee, Ho Nyung -
dc.contributor.author MacManus-Driscoll, Judith L. -
dc.contributor.author Kwon, Deok-Hwang -
dc.contributor.author Lee, Shinbuhm -
dc.date.accessioned 2024-01-29T23:10:11Z -
dc.date.available 2024-01-29T23:10:11Z -
dc.date.created 2023-08-17 -
dc.date.issued 2023-07 -
dc.identifier.issn 1530-6984 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/47685 -
dc.description.abstract Owing to its pseudocapacitive, unidimensional, rapid ion channels, TiO2(B) is a promising material for application to battery electrodes. In this study, we align these channels by epitaxially growing TiO2(B) films with the assistance of an isostructural VO2(B) template layer. In a liquid electrolyte, binder-free TiO2(B) epitaxial electrodes exhibit a supercapacity near the theoretical value of 335 mA h g-1 and an excellent charge-discharge reproducibility for ≥200 cycles, which outperform those of other TiO2(B) nanostructures. For the all-solid-state configuration employing the LiPON solid electrolyte, excellent stability persists. Our findings suggest excellent potential for miniaturizing all-solid-state nanobatteries in self-powered integrated circuits. © 2023 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Stable Supercapacity of Binder-Free TiO2(B) Epitaxial Electrodes for All-Solid-State Nanobatteries -
dc.type Article -
dc.identifier.doi 10.1021/acs.nanolett.3c00596 -
dc.identifier.wosid 001037628600001 -
dc.identifier.scopusid 2-s2.0-85167481586 -
dc.identifier.bibliographicCitation Nano Letters, v.23, no.15, pp.6815 - 6822 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor all-solid-state nanobattery -
dc.subject.keywordAuthor TiO2(B) -
dc.subject.keywordAuthor electrode -
dc.subject.keywordAuthor templated epitaxy -
dc.subject.keywordAuthor supercapacity -
dc.subject.keywordAuthor long retention -
dc.subject.keywordAuthor pseudocapacitiveintercalation -
dc.subject.keywordPlus THIN-FILMS -
dc.subject.keywordPlus TEMPLATED EPITAXY -
dc.subject.keywordPlus LITHIUM BATTERIES -
dc.subject.keywordPlus INSERTION -
dc.subject.keywordPlus INTERCALATION -
dc.subject.keywordPlus THERMODYNAMICS -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus NANOTUBES -
dc.citation.endPage 6822 -
dc.citation.number 15 -
dc.citation.startPage 6815 -
dc.citation.title Nano Letters -
dc.citation.volume 23 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Multifunctional films and nanostructures Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE