Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Beomil -
dc.contributor.author Tan, Ying Chuan -
dc.contributor.author Ryu, Yeonkyeong -
dc.contributor.author Jang, Kyuseon -
dc.contributor.author Abbas, Hafiz Ghulam -
dc.contributor.author Kang, Taehyeok -
dc.contributor.author Choi, Hyeonuk -
dc.contributor.author Lee, Kug-Seung -
dc.contributor.author Park, Sojung -
dc.contributor.author Kim, Wooyul -
dc.contributor.author Choi, Pyuck-Pa -
dc.contributor.author Ringe, Stefan -
dc.contributor.author Oh, Jihun -
dc.date.accessioned 2024-02-02T11:10:15Z -
dc.date.available 2024-02-02T11:10:15Z -
dc.date.created 2023-08-17 -
dc.date.issued 2023-07 -
dc.identifier.issn 2380-8195 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/47733 -
dc.description.abstract The development of Cu-based catalysts for electrochemical CO2 reduction reaction (CO2RR) with stronger CO-binding elements had been unsuccessful in improving multicarbon production from the CO2RR due to CO-poisoning. Here, we discover that trace doping levels of Co atoms in Cu, termed CoCu single-atom alloy (SAA), achieve up to twice the formation rate of CO as compared to bare Cu and further demonstrate a high jC of 282 mA cm-2 at −1.01 VRHE in a neutral electrolyte. From DFT calculations, Cu sites neighboring CO-poisoned Co atomic sites accelerate CO2-to-CO conversion and enhance the coverage of *CO intermediates required for the formation of multicarbon products. Furthermore, CoCu SAA also exhibits active sites that favor the deoxygenation of *HOCCH, which increases the selectivity toward ethylene over ethanol. Ultimately, CoCu SAA can simultaneously boost the formation of *CO intermediates and modulate the selectivity toward ethylene, resulting in one of the highest ethylene yields of 15.6%. © 2023 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Trace-Level Cobalt Dopants Enhance CO2 Electroreduction and Ethylene Formation on Copper -
dc.type Article -
dc.identifier.doi 10.1021/acsenergylett.3c00418 -
dc.identifier.wosid 001029707100001 -
dc.identifier.scopusid 2-s2.0-85166774906 -
dc.identifier.bibliographicCitation ACS Energy Letters, v.8, no.8, pp.3356 - 3364 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus ELECTROCHEMICAL REDUCTION -
dc.subject.keywordPlus CARBON-DIOXIDE -
dc.subject.keywordPlus HYDROGEN EVOLUTION -
dc.subject.keywordPlus ELECTRODES -
dc.subject.keywordPlus CONVERSION -
dc.subject.keywordPlus MECHANISM -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus COVERAGE -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus ENERGY -
dc.citation.endPage 3364 -
dc.citation.number 8 -
dc.citation.startPage 3356 -
dc.citation.title ACS Energy Letters -
dc.citation.volume 8 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Ab initio multi-scale engineering Lab(AIMS-E Lab) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE