Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Markandaraj, Sridhar Sethuram -
dc.contributor.author Dhanabal, Dinesh -
dc.contributor.author Shanmugam, Sangaraju -
dc.date.accessioned 2024-02-04T18:40:13Z -
dc.date.available 2024-02-04T18:40:13Z -
dc.date.created 2023-11-10 -
dc.date.issued 2023-11 -
dc.identifier.issn 2050-7488 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/47748 -
dc.description.abstract Membrane electrode assembly (MEA) electrolyzers offer a means to scale up nitric oxide (NO)-to-ammonia (NH3) electro-conversion assisted by renewable electricity and bring the anthropogenic nitrogen cycle back into balance. Herein, we show that atomically dispersed dual Fe, Ni atom embedded nitrogen-doped carbon nanotube (FeNi-NCNT) electrodes produce NH3 readily with a low overpotential of 210 mV, among the lowest overpotentials reported for the electrosynthesis of NH3 from NO. The FeNi-NCNT catalyst attains a high NH3 faradaic efficiency (FENH) of 92.6% at −0.5 VRHE. The high selectivity of FeNi-NCNT is believed to result from Ni sites lowering the activation energy and offering a stable intermediate during NH3 formation. While integrating FeNi-NCNT in the MEA electrolyzer, high FENH of up to 83.6% was achieved at a current density of of about 71 mA cm−2, presenting steady electrolysis over 50 h. This work guides employing dual-atom catalysts in MEA electrolyzer applications for efficient feedstock production. © 2023 The Royal Society of Chemistry. -
dc.language English -
dc.publisher Royal Society of Chemistry -
dc.title Electrochemical synthesis of ammonia from nitric oxide in a membrane electrode assembly electrolyzer over a dual Fe-Ni single atom catalyst -
dc.type Article -
dc.identifier.doi 10.1039/d3ta04600a -
dc.identifier.wosid 001087825300001 -
dc.identifier.scopusid 2-s2.0-85175554615 -
dc.identifier.bibliographicCitation Journal of Materials Chemistry A, v.11, no.43, pp.23479 - 23488 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus PYRIDINIC-NITROGEN -
dc.subject.keywordPlus NO REDUCTION -
dc.subject.keywordPlus EFFICIENT -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus COORDINATION -
dc.subject.keywordPlus ALKALINE -
dc.citation.endPage 23488 -
dc.citation.number 43 -
dc.citation.startPage 23479 -
dc.citation.title Journal of Materials Chemistry A -
dc.citation.volume 11 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Advanced Energy Materials Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE