Cited time in webofscience Cited time in scopus

Development of Electrochemical Water Splitting Catalysts in Alkaline Media for Green Hydrogen Production

Title
Development of Electrochemical Water Splitting Catalysts in Alkaline Media for Green Hydrogen Production
Alternative Title
그린 수소 생산을 위한 알칼라인 수전해 촉매 개발
Author(s)
Cheol-Hwan Shin
DGIST Authors
Cheol-Hwan ShinJong-Sung YuSu-Il In
Advisor
유종성
Co-Advisor(s)
Su-Il In
Issued Date
2024
Awarded Date
2024-02-01
Type
Thesis
Description
수전해;철-니켈 복합체;루테늄;그래핀;고결정 탄소
Abstract
With the rapid development of human society, various environmental problems like global warming, and air and water pollution have arisen, threatening our life and society. Many suggestions from the scientific community have been discussed, and use of renewable energy has been suggested as the most suitable solution to these problems. Regarding renewable energy, hydrogen has been widely considered as the most efficient, clean and renewable energy carrier for the future as it is a zero-emission fuel when burned with oxygen since water is the only product of the reaction. It can be used in internal combustion engines or electrochemical cells to power vehicles or to get electricity. Fuel cells using hydrogen as a fuel have been considered as the most promising alternative to fossil combustion engines because of high energy efficiency and negligible pollutant emission from the reaction. The electrochemical water splitting is considered as the most clean and efficient way of generating hydrogen without production of other pollutants when combined with renewable energy sources like sun and wind power. The electrochemical water splitting comprises two reactions: one is the cathodic hydrogen evolution reaction (HER), and the other is the anodic oxygen evolution reaction (OER) In this thesis, development of catalysts for OER an HER in the electrochemical water splitting cell under alkaline medium is established followed by experimental results and discussion. For the OER catalyst electrode, a binder-free hybrid electrode of Fe–Ni hydroxide composites is in situ prepared for the first time from nickel foam (NF) with Fe(NO3)3 as an Fe precursor in a home-made piranha solution, which is a 3: 1 mixture of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) as a reaction medium. Interestingly, in the presence of the piranha solution, the oxidation of NF is accelerated, while Fe3+ ions are transformed into Fe-hydroxide nanoparticles (NPs) on the NF. In the case of HER catalyst, single-layer (SG)-encapsulated Ru NPs were synthesized by a SiO2-protection method with chemical vapor deposition (CVD). The role of SiO2-protection was found to suppress growth of multi-layer (MG) and carbon nanotubes (CNTs) over the Ru surface. The as-prepared samples were tested for HER under an alkaline condition. In addition, a new N-doped extensively graphitized porous carbon (N-GPC) is prepared as a new catalyst support for Ru nanoparticles. This method is remarkably simple of pyrolyzing g- C3N4 in the presence of Mg metal. Here, Mg plays marvelous dual roles as a reducing agent to graphitize the g- C3N4 precursor at low temperature and as a precursor for Mg3N2, which generates network-structured porous carbon as a new porogen. This offers highly robust graphitized carbon with high electrical conductivity, network-structured high porosity, and proper N content, most desired as a catalyst support. Keywords: Electrochemical water splitting, Fe-Ni composite, ruthenium, graphene, graphitic carbon.
|문명이 고도로 발달됨에 따라, 지구 온난화, 수질 및 대기오염과 같은 환경 문제가 인류와 사회에 위협적인 문제로 인식이 된다. 과학계에서는 이를 해결하기 위해 다양한 해결책을 제시하였고, 그 중 친환경 재생에너지의 연구가 활발히 진행되고 있다. 수소는 대표적인 친환경 에너지원으로 인식되며, 사용시 물과 열만 배출하기 때문에 기존 화석 연료로 인한 오염을 획기적으로 배제할 수 있다. 수전해 기술은 수소를 생산하는 방법들 중 가장 오염물 방출이 적고 효율이 높다. 수전해 기술은 두가지 전기화학반응으로 이루어 지는데, 캐소드에서 수소 발생 반응과 애노드에서 산소 발생 반응이다. 본 학위논문에서 알칼라인 조건에서 수전해 전지를 위한 촉매 개발 방법 및 실험 결과를 기술한다.
산소 발생 촉매 전극을 위해, 바인더가 없는 Fe-Ni 니켈폼 전극을 피라냐 용액을 이용하여 빠르고 쉽게 합성하였다. 피라냐 용액은 황산과 질산의 3:1 부피비로 섞인 혼합 용액으로 주로 유기물을 산화 시켜 이를 제거에 사용되나, 본 논문에서는 Ni을 빠르게 산화 시켜 Fe과 복합체 형성 속도를 증가시키는데 사용하였다. Fe-Ni 전극은 다량의 Fe4+ 종을 포함하고 있었고, 이는 알칼라인 조건에서 산소 발생 반응의 핵심 활물질임을 입증하였다.
수소 발생 촉매를 위해, 단층 그래핀이 코딩된 Ru 나노 입자 합성과 저온에서 합성된 고결정성 및 질소 도핑된 다공성 탄소 담지체를 개발하였다. Ru 나노 입자에 SiO2 막을 우선 코팅하여 화학 기상 증착 방법으로 그래핀 코팅 시 과도한 그래핀 층의 성장을 억제하였다. 단층 그래핀이 코팅된 Ru 나노 입자는 기존 보고된 다층 그래핀이 코팅된 나노 입자 보다 본래의 Ru 활성을 잘 유지함과 동시에 단층 그래핀으로 촉매의 열화현상을 최소화하였다. 고결정성 및 질소가 도핑된 다공성 탄소 담지체는 질화 탄소와 Mg 분말을 혼합하여 기존 1800 도씨 이상에서 합성되었던 고결정 탄소를 900도씨 이하에서 합성하였다. 여기서 Mg은 질화 탄소의 탈질화 반응과 자체적인 기공의 주형 물질로 작용하여 다공성 및 고결정성을 동시에 확보할 수 있었다. 합성된 담지체에 Ru 나노 입자를 담지하여 수소 발생 반응 촉매로 사용하였으며, 탄소의 고결정성과 도핑된 질소가 Ru 나노 입자에 최적화된 안정성과 활성을 부여하였다.
Table Of Contents
Ⅰ. Chapter 1: High Performance Binder-free Fe–Ni Hydroxides on Nickel Foam Prepared in Piranha Solution for the Oxygen Evolution Reaction 1
1.1 Introduction 1
1.2 Experimental section 3
1.2.1 Materials 3
1.2.2 Preparation of Fe-Ni electrocatalysts and RuO2 electrode 3
1.2.3 Preparation of Fe(OH)3 powder 3
1.2.4 Material characterization 4
1.2.5 DFT calculation 4
1.2.6 Electrochemical characterization 5
1.2.7 Solar cell power-driven water electrolysis 6
1.3 Results and discussion 6
1.3.1 Characterization of morphologies and the chemical structure 6
1.3.2 OER catalytic performance 18
1.3.3 DFT calculations 27
1.3.4 Water splitting system powered by a solar cell 28
1.4 Conclusions 30
IⅠ. Chapter 2: Single-Layer Graphene-Encapsulated Ru Nanoparticles: The role of graphene for Efficient Electrochemical Hydrogen Evolution 31
2.1 Introduction 31
2.2 Experimental section 33
2.2.1 Materials 33
2.2.2 Preparation of SiO2 sphere 33
2.2.3 Preparation of Ru/SiO2 33
2.2.4 Preparation of Ru@G/SiO2 and Ru@G 33
2.2.5 Material characterization 34
2.2.6 DFT calculation 34
2.2.7 Electrochemical characterization 35
2.3 Results and discussion 36
2.3.1 Characterization of chemical features 36
2.3.2 Effect of SiO2 protection 45
2.3.3 Electrochemical HER performance 46
2.3.4 DFT calculation 50
2.4 Conclusions 54
IⅠI. Chapter 3: Ru-loaded pyrrolic-N-doped Extensively Graphitized Porous Carbon for High Performance Electrochemical Hydrogen Evolution 55
3.1 Introduction 55
3.2 Experimental section 57
3.2.1 Materials 57
3.2.2 Preparation of g-C3N4 and N-GPC-x samples 57
3.2.3 Preparation of N-doped reduced graphene oxide (N-rGO) 58
3.2.4 Loading Ru NPs on carbon supports 58
3.2.5 Material characterization 58
3.2.6 Quantum mechanics-based DFT calculation 59
3.2.7 Electrochemical characterization 60
3.3 Results and discussion 62
3.3.1 Synthesis and features of N-GPC 62
3.3.2 Physicochemical features and HER performance of Ru-loaded N-GPC 70
3.3.3 Comparisons with other carbon supports 77
3.3.4 Quantum mechanics-based analysis of the HER mechanisms in Ru/N-GPC 88
3.4 Conclusions 93
IV. References 94
4.1 Reference for Chapter 1 94
4.2 Reference for Chapter 2 102
4.3 Reference for Chapter 3 108
V. Abstract (Korean) 116
URI
http://hdl.handle.net/20.500.11750/48019

http://dgist.dcollection.net/common/orgView/200000724081
DOI
10.22677/THESIS.200000724081
Degree
Doctor
Department
Department of Energy Science and Engineering
Publisher
DGIST
Related Researcher
  • 유종성 Yu, Jong-Sung
  • Research Interests Materials chemistry; nanomaterials; electrochemistry; carbon and porous materials; fuel cell; battery; supercapacitor; sensor and photochemical catalyst
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE