Detail View

Development of Transition Metal Complex Dye and Radioactive Isotope Carbon-based Betavoltaic Battery
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Development of Transition Metal Complex Dye and Radioactive Isotope Carbon-based Betavoltaic Battery
Alternative Title
전이금속 복합 염료 및 방사 성 동위원소 탄소 기반 베타전지 개발
DGIST Authors
Hong Soo KimSu-Il InJiwoong Yang
Advisor
인수일
Co-Advisor(s)
Jiwoong Yang
Issued Date
2024
Awarded Date
2024-02-01
Citation
Hong Soo Kim. (2024). Development of Transition Metal Complex Dye and Radioactive Isotope Carbon-based Betavoltaic Battery. doi: 10.22677/THESIS.200000724036
Type
Thesis
Description
Nuclear energy;Nuclear battery;Betavoltaic Cell;Radioactive isotope
Table Of Contents
Ⅰ. Introduction 1
1.1. Energy and environmental issues 1
1.1.1. Relationship between greenhouse gas and electricity demand 2
1.1.2. Renewable energy 3
1.1.3. Energy storage/generation system 4
1.2. Nuclear energy 5
1.3. Nuclear battery 7
1.3.1. Radioactive isotopes for a nuclear battery 8
1.3.2. Classification of a nuclear battery 9
1.4. Betavoltaic battery 10
1.4.1. Principle and Equation of a betavoltaic battery 11
1.4.2. Selection of β-radiation sources 13
1.4.3. β-radiation absorbing materials 15
1.4.4. Interaction/distribution of β-radiation within absorbing material 16
1.5. Research approaches and organization of Thesis 18
1.6. References 21

ⅠI. Characterization and analysis tools 29
2.1. Scanning electron microscopy (SEM) · 29
2.1.1. Theoretical background · 29
2.1.2. Instrumentation 30
2.2. Transmission electron microscopy (TEM) 31
2.2.1. Theoretical background · 31
2.2.2. Instrumentation 32
2.3. Energy-dispersive X-ray spectroscopy (EDS) · 33
2.3.1. Theoretical background · 34
2.3.2. Instrumentation 34
2.4. X-ray diffraction (XRD) · 35
2.4.1. Theoretical background · 35
2.4.2. Instrumentation 36
2.5. Ultraviolet-Visible (UV-vis) spectroscopy · 37
2.5.1. Theoretical background · 38
2.5.2. Instrumentation 38
2.6. Raman spectroscopy 39
2.6.1. Theoretical background · 39
2.6.2. Instrumentation 40
2.7. Fourier Transform Infrared (FT-IR) Spectroscopy · 41
2.7.1. Theoretical background · 41
2.7.2. Instrumentation 42
2.8. X-ray photoelectron spectroscopy (XPS) 43
2.8.1. Theoretical background · 43
2.8.2. Instrumentation 44
2.9. Characterization of betavoltaic cell performance 45
2.9.1. Theoretical background · 45
2.9.2. Instrumentation 46
2.10. Monte Carlo simulation (GEANT4) · 47
2.11. References · 49

ⅠII. Design and fabrication of the metal complex molecules based dye-sensitized betavoltaic cell using radioactive isotope carbon nanoparticles/quantum dots 52
3.1. Introduction 52
3.2. Experimental section 54
3.2.1. Materials 54
3.2.2. Fabrication of the dye-sensitized TiO2-based working electrode 55
3.2.3. Fabrication of radioactive isotope carbon nanoparticles/quantum dots counter electrode 56
3.2.4. Assembly of the dye-sensitized betavoltaic cell 56
3.2.5. Material and device characterization 57
3.3. Results and Discussion 58
3.3.1. Characterization of working and counter electrodes 58
3.3.2. Electrochemical characterization and performance analysis 61
3.3.3. Speculated charge transfer mechanism for DSBC 66
3.4. Conclusion 68
3.5. References 73

ⅠV. Multiple-year battery based on highly efficient and stable dual-site radioactive isotope dye-sensitized betavoltaic cell 81
4.1. Introduction 81
4.2. Experimental section 84
4.2.1. Materials 84
4.2.2. Fabrication of β-radiated absorbing anode (TiCl4 treated TiO2-14CA/N719) 85
4.2.3. Fabrication of radioactive isotope carbon nanoparticles/quantum dots cathode (14CNP/CQD) 87
4.2.4. Assembly of a dual-site radioactive isotope dye-sensitized betavoltaic cell (d-DSBC) 87
4.2.5. Energy deposition simulation design 88
4.2.6. Material and device characterization 90
4.3. Results and Discussion 91
4.3.1. Characterization of working and counter electrodes 91
4.3.2. Electrochemical characterization and performance analysis 97
4.3.3. Monte-Carlo simulation of d-DSBC 107
4.3.4. Speculated mechanism of d-DSBC 108
4.4. Conclusion 109
4.5. References 113

V. Conclusion 122
요약문 124
URI
http://hdl.handle.net/20.500.11750/48020
http://dgist.dcollection.net/common/orgView/200000724036
DOI
10.22677/THESIS.200000724036
Degree
Doctor
Department
Department of Energy Science and Engineering
Publisher
DGIST
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads