Cited time in webofscience Cited time in scopus

Spin-Orbit Torque Induced Magnetization Dynamics in Chiral Symmetry Broken System with Interfacial Dzyaloshinskii-Moriya Interaction

Title
Spin-Orbit Torque Induced Magnetization Dynamics in Chiral Symmetry Broken System with Interfacial Dzyaloshinskii-Moriya Interaction
Alternative Title
계면 Dzylaoshinskii-Moriya 상호작용을 포함하는 키랄 대칭 파괴 시스템에서 스핀 궤도 토크에 의한 자화 동역학 연구
Author(s)
Suhyeok An
DGIST Authors
Suhyeok AnChun-Yeol YouJung-Il Hong
Advisor
유천열
Co-Advisor(s)
Jung-Il Hong
Issued Date
2024
Awarded Date
2024-02-01
Type
Thesis
Description
Spin-Orbit torque;interfacial Dzyaloshinskii-Moriya interaction;Magnetization switching;Magnetic energy;Chirality
Abstract
Spin-orbit torque (SOT) induced magnetization switching has potential in application on magnetic material based memory and logic devices because of its benefits of a fast writing speed and efficient power consumption. However, to achieve deterministic SOT induced magnetization switching in a perpendicular magnetic anisotropy (PMA) system, applying an additional external in- plane magnetic field is essential. Here, I focus on the chirality of a magnetic ordering system. It is because there are a few reports that achieve the field-free SOT induced magnetization switching when chirality is considered. However, previous researches are limited into phenomenological point of view only, therefore, systematic analysis of the effect of the chiral spin texture on deterministic magnetization switching is still scarce. Through this thesis, I propose that the possibility of field-free switching of magnetization by SOT when the chirality is introduced and prove its underlying mechanism. I observed the chirality- dependent SOT induced magnetization switching in various chiral symmetry broken system with structure of a heavy metal (HM) /ferromagnet (FM) bilayer. With micromagnetic simulations and experiments, I confirmed the role of the Néel-type chiral spin texture in terms of magnetization dynamics, magnetic energy, and torques. From the results, I conclude that deterministic field-free switching can be achieved when the DMI of the system corresponds with the chirality of spin texture and find major parameter is determined strongly from interfacial Dzyaloshinskii-Moriya interaction.| 반전 대칭 파괴된 스핀-궤도 결합 물질에서 나타나는 스핀 궤도 토크는 빠른 속도와 높은 에너지 효율면에 있어 초저전력/초고속 자성기반 차세대 메모리 혹은 논리 소자 개발에 사용될 수 있는 가능성으로부터 많은 각광을 받고 있다. 하지만 스핀 궤도 토크를 이용한 정보 입력 소자는 높은 집적률을 가지는 수직자기 이방성인 경우에 확정적인 정보 입력이 불가능하고 이는 하나의 문제로 떠오르고 있다.
본 연구는 계면 Dzyaloshinskii-Moriya 상호작용으로 알려져있는 비대칭 상호작용을 이용할 경우 시스템이 보유하고 있는 본질적 특성만을 가지고 수직자기 이방성 시스템에서 스핀 궤도 토크를 이용한 정보 입력을 위해 가장 주요하게 요구되는 무자기장 자화 스위칭이 가능함을 이론, 전산모사, 그리고 실험을 통해 밝힌다.
비대칭 상호작용을 이용해 스핀 궤도 토크 기반 무자기장 자화 반전을 달성하기 위해서는 공간상의 비공선형 스핀 배열의 형성이 필수적이며, 이 논문에서 제시된 다양한 이론, 전산모사 그리고 실험은 비공선형 스핀 배열이 비대칭 상호작용에 의해 확정적인 자화 반전을 가능하게 하는 면 수직 방향 토크를 기여한다는 것을 뒷받침한다. 다음과 같은 시스템 본질적인 특성만을 이용한 스핀 궤도 토크 자화 반전 연구는 더 우수한 효율성을 가지는 자성 기반 정보 소자 개발에 기여할 것이다.
Table Of Contents
List of Contents
Abstract i
List of Contents ii
List of Figures · iv


I. INTRODUCTION 1


ⅠI. ROLE OF CHIRAL SPIN CONFIGURATION FOR FIELD-FREE SPIN-ORBIT
TORQUE INDUCED MAGNETIZATION SWITCHING
2.1 Overview 4
2.2 Sample fabrication 6
2.3 Spin-orbit torque induced magnetization switching measurement 8
2.4 Magnetization switching simulation by pure spin current injection 11
2.5 Conclusion 18


ⅠII. Z-DIRECTIONAL TORQUE COMPONENTS IN SPIN-ORBIT TORQUE BY
LATERAL SYMMETRY BROKEN NONCOLLINEAR SPIN TEXTURE
3.1 Overview · 18
3.2 Magnetization switching simulation with noncollinear spin texture 20
3.3 System energy and z directional torque components 24
3.4 Experimental observation of spin-orbit torque switching
3.4.1 Helium ion irradiation induced system modulation 33
3.4.2 Spin-orbit torque switching with noncollinear spin texture · 53
3.4 Conclusion 58




ⅠV. CHIRALITY-DEPENDENT ENERGY INDUCED BY SPIN-ORBIT TORQUE-DRIVEN
ARTIFICIAL SPIN TEXTURE
4.1 Overview · 59
4.2 Theoretical evaluation of system energy variation by artificial spin texture 62
4.3 Experimental observation of system energy variation
4.3.1 Sample fabrication 64
4.3.2 Azimuthal angle dependent system energy 72
4.3.3 Degree of anisotropy asymmetry dependent system energy 76
4.4 Micromagnetic Simulations · 81
4.5 Conclusion 84

V. SUMMARY OF THESIS · 84
URI
http://hdl.handle.net/20.500.11750/48043

http://dgist.dcollection.net/common/orgView/200000723586
DOI
10.22677/THESIS.200000723586
Degree
Doctor
Department
Department of Physics and Chemistry
Publisher
DGIST
Related Researcher
  • 유천열 You, Chun-Yeol
  • Research Interests Spintronics; Condensed Matter Physics; Magnetic Materials & Thin Films; Micromagnetic Simulations; Spin Nano-Devices
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE