Solar-driven water evaporation; mechanochemical; photothermal; conductive polymer; membrane
Abstract
Addressing the global challenge of freshwater scarcity is a complex endeavor. It requires the development of a simple, cost-effective, and highly efficient system for freshwater generation. Solar-driven water evaporation has emerged as a promising, eco-friendly strategy for efficient water purification. This paper reports the synthesis of a hydrophilic conductive polymer and its carbon nanotube (CNT) composites for effective solar-driven water evaporation through a rapid and straightforward mechanochemical process. By grinding an inexpensive eutectic-phase monomer with oxidants, doping agents, and oxidized CNTs, doped polydiphenylamine (PD) and its CNT composites were obtained. These composites demonstrated remarkable photothermal efficiency (89.9%) and achieved a high water evaporation rate (1.41 kg m-2 h-1) under 1 sun irradiation. The dual doping process and the introduction of oxidized CNTs into PD significantly improved wettability, photothermal efficiency, and water evaporation performance. This study offers an efficient and practical strategy for the rapid fabrication of photothermal membranes designed for solar-driven freshwater generation. Keywords: Solar-driven water evaporation, mechanochemical, photothermal, conductive polymer, membrane|지구상에 존재하는 물의 오직 2.5%만이 인간이 사용할 수 있어 결과적으로, 2020년 현재 전 세계 인구의 무려 26%인 약 20억 명이 안전한 물에 접근해야 하는 어려운 과제에 직면해 있으며, 이들 중 절반은 깨끗한 식수의 부족으로 인해 건강에 영향을 받고 있습니다. 이를 해결하기 위해서는 담수 생성을 위한 간단하고 비용 효율적이며 효율적인 시스템 개발이 필요합니다. 태양열 기반 물 증발은 효율적인 물 정화를 위한 유망하고 친환경적인 전략으로 부상하고 있습니다. 본 연구에서는 빠르고 간단한 기계화학적 공정을 통해 효과적인 태양열 구동 물 증발을 위한 친수성 전도성 고분자와 탄소 나노튜브(CNT) 복합재의 합성을 보고합니다. 저렴한 공융액체를 산화제, 도핑제 및 산화된 CNT와 함께 분쇄하여 도핑된 폴리디페닐아민(PD) 및 CNT 복합재를 얻었습니다. 이들 복합재는 놀라운 광열 효율(89.9%)을 나타냈으며 1 kW/m2 조건하에서 높은 수분 증발률(1.41kg m-2h-1)을 달성했습니다. 이중 도핑 공정과 산화된 CNT를 PD에 도입함으로써 습윤성, 광열 효율 및 수분 증발 성능이 크게 향상되었습니다. 이 연구는 태양열 구동 담수 생성을 위해 설계된 광열막의 신속한 제조를 위한 효율적이고 실용적인 전략을 제공합니다.
Table Of Contents
List of Contents Abstract i List of Abbreviations and Symbols ii List of Contents iv List of Tables and Figures v
Ⅰ. Introduction 1 1.1 Water harvesting 1 1.2 Water harvesting method 2 1.4.1 Reverse osmosis 2 1.4.2 Compression cooling · 2 1.4.3 Multistage flash distillation 3 1.3 Solar steam generation · 4 1.3.1 Mechanism of photothermal conversion 4 1.3.2 Types of photothermal materials 6 1.3.3 Solar to heat conversion efficiency 8 1.3.4 Interfacial solar steam generation 8
Ⅱ. Experimental 10 2.1 Material information 10 2.2 Synthesis of PD · 10 2.3 Synthesis of D-PD · 10 2.4 Synthesis of DD-PD 10 2.5 Synthesis of DD-PD/CNT · 10 2.6 Fabrication of membrane method 11 2.7 Solar driven water evaporation test 11 2.8 Conductivity test 11 2.9 Characterization method 11