Detail View

Small-scale effects of thermal inflation on halo abundance at high-z, galaxy substructure abundance, and 21-cm power spectrum
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Small-scale effects of thermal inflation on halo abundance at high-z, galaxy substructure abundance, and 21-cm power spectrum
Issued Date
2017-11
Citation
Hong, Sungwook E. (2017-11). Small-scale effects of thermal inflation on halo abundance at high-z, galaxy substructure abundance, and 21-cm power spectrum. Physical Review D, 96(10). doi: 10.1103/PhysRevD.96.103515
Type
Article
Keywords
SUPERSTRING MODELSDARK-MATTERCOSMOLOGICAL IMPLICATIONSGAUGE-SYMMETRYGALACTIC HALOSMODULI PROBLEMMASSBARYOGENESISREIONIZATIONBREAKING
ISSN
2470-0010
Abstract
We study the impact of thermal inflation on the formation of cosmological structures and present astrophysical observables which can be used to constrain and possibly probe the thermal inflation scenario. These are dark matter halo abundance at high redshifts, satellite galaxy abundance in the Milky Way, and fluctuation in the 21-cm radiation background before the epoch of reionization. The thermal inflation scenario leaves a characteristic signature on the matter power spectrum by boosting the amplitude at a specific wave number determined by the number of e-foldings during thermal inflation (Nbc), and strongly suppressing the amplitude for modes at smaller scales. For a reasonable range of parameter space, one of the consequences is the suppression of minihalo formation at high redshifts and that of satellite galaxies in the Milky Way. While this effect is substantial, it is degenerate with other cosmological or astrophysical effects. The power spectrum of the 21-cm background probes this impact more directly, and its observation may be the best way to constrain the thermal inflation scenario due to the characteristic signature in the power spectrum. The Square Kilometre Array (SKA) in phase 1 (SKA1) has sensitivity large enough to achieve this goal for models with Nbc 26 if a 10000-hr observation is performed. The final phase SKA, with anticipated sensitivity about an order of magnitude higher, seems more promising and will cover a wider parameter space. © 2017 American Physical Society.
URI
http://hdl.handle.net/20.500.11750/4855
DOI
10.1103/PhysRevD.96.103515
Publisher
American Physical Society
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads