Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Choi, Sung Kyu -
dc.contributor.author Chae, Weon-Sik -
dc.contributor.author Song, Bokyung -
dc.contributor.author Cho, Chang-Hee -
dc.contributor.author Choi, Jina -
dc.contributor.author Han, Dong Suk -
dc.contributor.author Choi, Wonyong -
dc.contributor.author Park, Hyunwoong -
dc.date.available 2018-01-25T01:09:08Z -
dc.date.created 2017-04-10 -
dc.date.issued 2016-08 -
dc.identifier.issn 2050-7488 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/5142 -
dc.description.abstract p-Si wire arrays overlaid with an ultrathin titanium nitride (TiN) film are developed and demonstrated to be an efficient and robust photocathode for hydrogen production. Arrays of vertically aligned 20 μm long p-Si microwires of varying diameters (1.6-14.6 μm) are fabricated via a photolithographic technique, and then the wires are coated with a TiN nanolayer 2-20 nm thick by low-temperature plasma-enhanced atomic layer deposition. The optimized heterojunction consisting of 1.6 μm-thick wires covered by 10 nm thick TiN exhibits significantly improved performance for hydrogen evolution reaction under simulated sunlight (AM 1.5G, 100 mW cm-2). It displays a photocurrent onset potential of ∼+0.4 V vs. reversible hydrogen electrode (RHE), and a faradaic efficiency of nearly 100% at 0 V vs. RHE over 20 h of reaction. Time-resolved photoluminescence decay reveals that the lifetime (τ) of the photogenerated charge carriers in the optimized wire/TiN heterojunction is ∼60% shorter than those using thicker wires, suggesting significantly faster charge transfer. Such remarkable performance is attributed to enhanced transfer of the minority carriers in the radial direction of the wires. TiN performs the triple roles of antireflection, protection of the Si surface, and electrocatalysis of hydrogen production. Finite-difference time-domain simulation reveals a significant increase in the absorptance of wire arrays with TiN film, and that long wavelength photons are more effectively absorbed by the wire/TiN arrays. © 2016 The Royal Society of Chemistry. -
dc.publisher Royal Society of Chemistry -
dc.title Photoelectrochemical hydrogen production on silicon microwire arrays overlaid with ultrathin titanium nitride -
dc.type Article -
dc.identifier.doi 10.1039/c6ta05200b -
dc.identifier.scopusid 2-s2.0-84987755485 -
dc.identifier.bibliographicCitation Journal of Materials Chemistry A, v.4, no.36, pp.14008 - 14016 -
dc.subject.keywordPlus Atomic Layer Deposition -
dc.subject.keywordPlus CARBON-DIOXIDE -
dc.subject.keywordPlus Charge Transfer -
dc.subject.keywordPlus Electrocatalysis -
dc.subject.keywordPlus Electrocatalysts -
dc.subject.keywordPlus Electrodes -
dc.subject.keywordPlus EVOLUTION REACTION -
dc.subject.keywordPlus Finite Difference Time Domain Method -
dc.subject.keywordPlus Finite Difference Time Domain Simulations -
dc.subject.keywordPlus Heterojunctions -
dc.subject.keywordPlus Hydrogen Evolution Reactions -
dc.subject.keywordPlus Hydrogen Production -
dc.subject.keywordPlus Long-Wavelength Photons -
dc.subject.keywordPlus Low Temperature Plasmas -
dc.subject.keywordPlus Nitrides -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus PHOTOANODES -
dc.subject.keywordPlus PHOTOCATHODES -
dc.subject.keywordPlus Photoelectrochemical Hydrogen Production -
dc.subject.keywordPlus Photogenerated Charge Carriers -
dc.subject.keywordPlus Reversible Hydrogen Electrodes -
dc.subject.keywordPlus Semiconductor Quantum Wells -
dc.subject.keywordPlus Silicon -
dc.subject.keywordPlus SOLAR-CELLS -
dc.subject.keywordPlus TemPERATURE -
dc.subject.keywordPlus Time-Resolved Photoluminescence -
dc.subject.keywordPlus Time Domain Analysis -
dc.subject.keywordPlus TiO2 -
dc.subject.keywordPlus Titanium -
dc.subject.keywordPlus Titanium Compounds -
dc.subject.keywordPlus Titanium Nitride -
dc.subject.keywordPlus WATER OXIDATION -
dc.subject.keywordPlus Wire -
dc.citation.endPage 14016 -
dc.citation.number 36 -
dc.citation.startPage 14008 -
dc.citation.title Journal of Materials Chemistry A -
dc.citation.volume 4 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Future Semiconductor Nanophotonics Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE