Communities & Collections
Researchers & Labs
Titles
DGIST
LIBRARY
DGIST R&D
Detail View
ETC
1. Journal Articles
A Quantization of Moduli Spaces of 3-Dimensional Gravity
Kim, Hyun Kyu
;
Scarinci, Carlos
ETC
1. Journal Articles
Citations
WEB OF SCIENCE
Citations
SCOPUS
Metadata Downloads
XML
Excel
Title
A Quantization of Moduli Spaces of 3-Dimensional Gravity
Issued Date
2024-06
Citation
Kim, Hyun Kyu. (2024-06). A Quantization of Moduli Spaces of 3-Dimensional Gravity. Communications in Mathematical Physics, 405(6). doi: 10.1007/s00220-024-05012-8
Type
Article
Keywords
TEICHMULLER SPACE
;
(2+1)-GRAVITY
;
REALIZATION
;
EQUATIONS
;
DYNAMICS
;
MAP
ISSN
0010-3616
Abstract
We construct a quantization of the moduli space GHΛ(S×R) of maximal globally hyperbolic Lorentzian metrics on S×R with constant sectional curvature Λ, for a punctured surface S. Although this moduli space is known to be symplectomorphic to the cotangent bundle of the Teichmüller space of S independently of the value of Λ, we define geometrically natural classes of observables leading to Λ-dependent quantizations. Using special coordinate systems, we first view GHΛ(S×R) as the set of points of a cluster X-variety valued in the ring of generalized complex numbers RΛ=R[ℓ]/(ℓ2+Λ). We then develop an RΛ-version of the quantum theory for cluster X-varieties by establishing RΛ-versions of the quantum dilogarithm function. As a consequence, we obtain three families of projective unitary representations of the mapping class group of S. For Λ<0 these representations recover those of Fock and Goncharov, while for Λ≥0 the representations are new. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
URI
http://hdl.handle.net/20.500.11750/56646
DOI
10.1007/s00220-024-05012-8
Publisher
Springer
Show Full Item Record
File Downloads
There are no files associated with this item.
공유
공유하기
Total Views & Downloads