Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Jung, Jin-Woo -
dc.contributor.author Choi, Hyeon-Seo -
dc.contributor.author Lee, Young-Jun -
dc.contributor.author Kim, Youngjae -
dc.contributor.author Taniguchi, Takashi -
dc.contributor.author Watanabe, Kenji -
dc.contributor.author Choi, Min-Yeong -
dc.contributor.author Jang, Jae Hyuck -
dc.contributor.author Chung, Hee-Suk -
dc.contributor.author Kim, Dohun -
dc.contributor.author Kim, Youngwook -
dc.contributor.author Cho, Chang-Hee -
dc.date.accessioned 2024-09-06T15:40:12Z -
dc.date.available 2024-09-06T15:40:12Z -
dc.date.created 2024-04-01 -
dc.date.issued 2024-06 -
dc.identifier.issn 2198-3844 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56855 -
dc.description.abstract Hexagonal boron nitride (h-BN) is a key ingredient for various 2D van der Waals heterostructure devices, but the exact role of h-BN encapsulation in relation to the internal defects of 2D semiconductors remains unclear. Here, it is reported that h-BN encapsulation greatly removes the defect-related gap states by stabilizing the chemisorbed oxygen molecules onto the defects of monolayer WS2 crystals. Electron energy loss spectroscopy (EELS) combined with theoretical analysis clearly confirms that the oxygen molecules are chemisorbed onto the defects of WS2 crystals and are fixated by h-BN encapsulation, with excluding a possibility of oxygen molecules trapped in bubbles or wrinkles formed at the interface between WS2 and h-BN. Optical spectroscopic studies show that h-BN encapsulation prevents the desorption of oxygen molecules over various excitation and ambient conditions, resulting in a greatly lowered and stabilized free electron density in monolayer WS2 crystals. This suppresses the exciton annihilation processes by two orders of magnitude compared to that of bare WS2. Furthermore, the valley polarization becomes robust against the various excitation and ambient conditions in the h-BN encapsulated WS2 crystals. -
dc.language English -
dc.publisher Wiley -
dc.title Defect Passivation of 2D Semiconductors by Fixating Chemisorbed Oxygen Molecules via h-BN Encapsulations -
dc.type Article -
dc.identifier.doi 10.1002/advs.202310197 -
dc.identifier.wosid 001185998800001 -
dc.identifier.scopusid 2-s2.0-85187946266 -
dc.identifier.bibliographicCitation Advanced Science, v.11, no.22 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor hexagonal boron nitride -
dc.subject.keywordAuthor oxygen molecule -
dc.subject.keywordAuthor transition metal dichalcogenide -
dc.subject.keywordAuthor chemisorption -
dc.subject.keywordAuthor defect passivation -
dc.subject.keywordPlus DYNAMICS -
dc.subject.keywordPlus TRIONS -
dc.subject.keywordPlus EXCITONS -
dc.subject.keywordPlus PHOTOLUMINESCENCE -
dc.subject.keywordPlus BIEXCITONS -
dc.subject.keywordPlus VALLEY POLARIZATION -
dc.subject.keywordPlus MONOLAYER MOS2 -
dc.citation.number 22 -
dc.citation.title Advanced Science -
dc.citation.volume 11 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE