WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Choi, Songhee | - |
| dc.contributor.author | Son, Jaeseok | - |
| dc.contributor.author | MacManus-Driscoll, Judith L. | - |
| dc.contributor.author | Lee, Shinbuhm | - |
| dc.date.accessioned | 2024-09-06T15:40:13Z | - |
| dc.date.available | 2024-09-06T15:40:13Z | - |
| dc.date.created | 2024-04-01 | - |
| dc.date.issued | 2024-03 | - |
| dc.identifier.issn | 1530-6984 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/56856 | - |
| dc.description.abstract | We reversibly control ferromagnetic-antiferromagnetic ordering in an insulating ground state by annealing tensile-strained LaCoO3 films in hydrogen. This ionic-magnetic coupling occurs due to the hydrogen-driven topotactic transition between perovskite LaCoO3 and brownmillerite La2Co2O5 at a lower temperature (125-200 °C) and within a shorter time (3-10 min) than the oxygen-driven effect (500 °C, tens of hours). The X-ray and optical spectroscopic analyses reveal that the transition results from hydrogen-driven filling of correlated electrons in the Co 3d-orbitals, which successively releases oxygen by destabilizing the CoO6 octahedra into CoO4 tetrahedra. The transition is accelerated by surface exchange, diffusion of hydrogen in and oxygen out through atomically ordered oxygen vacancy “nanocomb” stripes in the tensile-strained LaCoO3 films. Our ionic-magnetic coupling with fast operation, good reproducibility, and long-term stability is a proof-of-principle demonstration of high-performance ultralow power magnetic switching devices for sensors, energy, and artificial intelligence applications, which are keys for attaining carbon neutrality. © 2024 American Chemical Society. | - |
| dc.language | English | - |
| dc.publisher | American Chemical Society | - |
| dc.title | Hydrogen-Driven Low-Temperature Topotactic Transition in Nanocomb Cobaltite for Ultralow Power Ionic-Magnetic Coupled Applications | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1021/acs.nanolett.3c04414 | - |
| dc.identifier.wosid | 001185405000001 | - |
| dc.identifier.scopusid | 2-s2.0-85187997657 | - |
| dc.identifier.bibliographicCitation | Choi, Songhee. (2024-03). Hydrogen-Driven Low-Temperature Topotactic Transition in Nanocomb Cobaltite for Ultralow Power Ionic-Magnetic Coupled Applications. Nano Letters, 24(12), 3606–3613. doi: 10.1021/acs.nanolett.3c04414 | - |
| dc.description.isOpenAccess | FALSE | - |
| dc.subject.keywordAuthor | ionic-magnetic coupling | - |
| dc.subject.keywordAuthor | LaCoOx | - |
| dc.subject.keywordAuthor | hydrogen-driventopotactic transition | - |
| dc.subject.keywordAuthor | 3d-orbital occupation | - |
| dc.subject.keywordAuthor | atomicallyordered oxygen vacancynanocomb stripes | - |
| dc.subject.keywordPlus | OXYGEN | - |
| dc.subject.keywordPlus | DIFFUSION | - |
| dc.subject.keywordPlus | MEMRISTOR | - |
| dc.subject.keywordPlus | DYNAMICS | - |
| dc.subject.keywordPlus | OXIDES | - |
| dc.subject.keywordPlus | CRYSTAL-STRUCTURE | - |
| dc.citation.endPage | 3613 | - |
| dc.citation.number | 12 | - |
| dc.citation.startPage | 3606 | - |
| dc.citation.title | Nano Letters | - |
| dc.citation.volume | 24 | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry; Science & Technology - Other Topics; Materials Science; Physics | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter | - |
| dc.type.docType | Article | - |