Detail View

Robust metal-organic framework monoliths for long-term cycling lithium metal batteries
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Chaejeong -
dc.contributor.author Jeong, Wooyoung -
dc.contributor.author Shin, Hong Rim -
dc.contributor.author Jung, Kyu-Nam -
dc.contributor.author Lee, Jong-Won -
dc.date.accessioned 2024-10-25T21:40:20Z -
dc.date.available 2024-10-25T21:40:20Z -
dc.date.created 2024-04-23 -
dc.date.issued 2024-05 -
dc.identifier.issn 2050-7488 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57051 -
dc.description.abstract Lithium metal with low electrochemical potential and high theoretical capacity has attracted significant attention as an anode material for high-energy-density batteries. However, the practical application of Li metal anodes has been inhibited by the growth of Li dendrites during charge-discharge cycling. Nano- or micro-porous layers have been introduced at the Li/electrolyte interface to regulate the Li+ flux and stabilize the Li metal anode. However, such interlayers fabricated via slurry-casting have non-uniform porous structures containing interparticle voids due to the binders and solvents, which reduces the efficacy of the interlayer in suppressing dendritic Li growth. Herein, we report mechanically robust void-free metal-organic framework (MOF) monoliths that can effectively homogenize the Li+ flux and suppress dendritic growth. MOF monoliths (500 nm-thick) are directly grown on a polypropylene separator without binders via a simple chemical route with a void-free structure and mechanical robustness (Young's modulus of ∼7.8 GPa). The monolithic MOF film facilitates the filtration of large anions through the nanopores, resulting in an increased Li+ transference number. Furthermore, electrochemical simulations and experiments confirm that MOF monoliths with well-ordered nanopores but without interparticle voids effectively redistribute the locally concentrated Li+ flux over the Li anode, leading to reversible Li plating and stripping. A Li metal battery (full cell) with MOF monoliths operates stably over 300 cycles with a capacity retention of 96.6%. The interlayer design proposed in this study offers the possibility of commercializing high-energy-density Li metal batteries with long cycle lifetimes. © 2024 The Royal Society of Chemistry. -
dc.language English -
dc.publisher Royal Society of Chemistry -
dc.title Robust metal-organic framework monoliths for long-term cycling lithium metal batteries -
dc.type Article -
dc.identifier.doi 10.1039/d4ta00488d -
dc.identifier.wosid 001198684100001 -
dc.identifier.scopusid 2-s2.0-85190142234 -
dc.identifier.bibliographicCitation Kim, Chaejeong. (2024-05). Robust metal-organic framework monoliths for long-term cycling lithium metal batteries. Journal of Materials Chemistry A, 12(18), 10686–10694. doi: 10.1039/d4ta00488d -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus ANODE -
dc.subject.keywordPlus SEPARATORS -
dc.subject.keywordPlus SOLID-ELECTROLYTE INTERPHASE -
dc.subject.keywordPlus RECENT PROGRESS -
dc.citation.endPage 10694 -
dc.citation.number 18 -
dc.citation.startPage 10686 -
dc.citation.title Journal of Materials Chemistry A -
dc.citation.volume 12 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads