Detail View

Spectroscopic Evidence of Ultrafast Topological Phase Transition by Light-Driven Strain
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Park, Tae Gwan -
dc.contributor.author Baek, Seungil -
dc.contributor.author Park, Junho -
dc.contributor.author Shin, Eui-Cheol -
dc.contributor.author Na, Hong Ryeol -
dc.contributor.author Oh, Eon-Taek -
dc.contributor.author Chun, Seung-Hyun -
dc.contributor.author Kim, Yong-Hyun -
dc.contributor.author Lee, Sunghun -
dc.contributor.author Rotermund, Fabian -
dc.date.accessioned 2024-11-22T17:40:17Z -
dc.date.available 2024-11-22T17:40:17Z -
dc.date.created 2024-11-15 -
dc.date.issued 2024-10 -
dc.identifier.issn 1936-0851 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57202 -
dc.description.abstract Enabling reversible control over the topological invariants, transitioning them from nontrivial to trivial states, has fundamental implications for quantum information processing and spintronics. It offers a promising avenue for establishing an efficient on/off switch mechanism for robust and dissipationless spin-currents. While mechanical strain has traditionally been advantageous for such manipulation of topological invariants, it often comes with the drawback of in-plane fractures, rendering it unsuitable for high-speed, time-dependent operations. This study employs ultrafast optical and THz spectroscopy to explore topological phase transitions induced by light-driven strain in Bi2Se3. Bi2Se3 requires substantial strain for Z2 switching. Our observations provide experimental evidence of ultrafast switching behavior, demonstrating a transition from a topological insulator with spin-momentum-locked surfaces to hybridized states and normal insulating phases under ambient conditions. Notably, applying light-induced strong out-of-plane strain effectively suppresses surface-bulk coupling, facilitating the differentiation of surface and bulk conductance even at room temperature─significantly surpassing the Debye temperature. We expect various time-dependent sequences of transient hybridization and manipulation of topological invariant through photoexcitation intensity adjustments. The sudden surface and bulk transport alterations near the transition point enable coherent conductance modulation at hypersound frequencies. Our findings on the potential of light-triggered ultrafast switching of topological invariants hold promise for high-speed topological switching and its related applications. © 2024 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Spectroscopic Evidence of Ultrafast Topological Phase Transition by Light-Driven Strain -
dc.type Article -
dc.identifier.doi 10.1021/acsnano.4c06253 -
dc.identifier.wosid 001344922000001 -
dc.identifier.scopusid 2-s2.0-85208243226 -
dc.identifier.bibliographicCitation Park, Tae Gwan. (2024-10). Spectroscopic Evidence of Ultrafast Topological Phase Transition by Light-Driven Strain. ACS Nano, 18(45), 30966–30977. doi: 10.1021/acsnano.4c06253 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor topological insulators -
dc.subject.keywordAuthor light-induced phase transition -
dc.subject.keywordAuthor THz spectroscopy -
dc.subject.keywordAuthor coherent phonons -
dc.subject.keywordAuthor interlayer vibrations -
dc.subject.keywordAuthor ultrafast spectroscopy -
dc.subject.keywordPlus ELASTIC PROPERTIES -
dc.subject.keywordPlus INSULATOR BI2SE3 -
dc.subject.keywordPlus CONDUCTIVITY -
dc.subject.keywordPlus GRAPHENE -
dc.citation.endPage 30977 -
dc.citation.number 45 -
dc.citation.startPage 30966 -
dc.citation.title ACS Nano -
dc.citation.volume 18 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이성훈
Lee, Sunghun이성훈

Division of Nanotechnology

read more

Total Views & Downloads