Detail View

Turing Instability and Dynamic Bifurcation for the One-Dimensional Gray–Scott Model
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Choi, Yuncherl -
dc.contributor.author Ha, Taeyoung -
dc.contributor.author Han, Jongmin -
dc.contributor.author Kim, Sewoong -
dc.contributor.author Lee, Doo Seok -
dc.date.accessioned 2024-12-08T16:10:21Z -
dc.date.available 2024-12-08T16:10:21Z -
dc.date.created 2024-11-21 -
dc.date.issued 2025-01 -
dc.identifier.issn 0022-2526 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57249 -
dc.description.abstract We study the dynamic bifurcation of the one-dimensional Gray–Scott model by taking the diffusion coefficient (Formula presented.) of the reactor as a bifurcation parameter. We define a parameter space (Formula presented.) of (Formula presented.) for which the Turing instability may happen. Then, we show that it really occurs below the critical number (Formula presented.) and obtain rigorous formula for the bifurcated stable patterns. When the critical eigenvalue is simple, the bifurcation leads to a continuous (resp. jump) transition for (Formula presented.) if (Formula presented.) is negative (resp. positive). We prove that (Formula presented.) when (Formula presented.) lies near the Bogdanov–Takens point (Formula presented.). When the critical eigenvalue is double, we have a supercritical bifurcation that produces an (Formula presented.) -attractor (Formula presented.). We prove that (Formula presented.) consists of four asymptotically stable static solutions, four saddle static solutions, and orbits connecting them. We also provide numerical results that illustrate the maintheorems. © 2024 Wiley Periodicals LLC. -
dc.language English -
dc.publisher Wiley -
dc.title Turing Instability and Dynamic Bifurcation for the One-Dimensional Gray–Scott Model -
dc.type Article -
dc.identifier.doi 10.1111/sapm.12786 -
dc.identifier.wosid 001358655200001 -
dc.identifier.scopusid 2-s2.0-85208202754 -
dc.identifier.bibliographicCitation Choi, Yuncherl. (2025-01). Turing Instability and Dynamic Bifurcation for the One-Dimensional Gray–Scott Model. Studies in Applied Mathematics, 154(1). doi: 10.1111/sapm.12786 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Gray-Scott model -
dc.subject.keywordAuthor pattern formation -
dc.subject.keywordAuthor Turing instability -
dc.subject.keywordAuthor attractor bifurcation -
dc.subject.keywordPlus PATTERN-FORMATION -
dc.subject.keywordPlus PHASE-TRANSITION -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus OSCILLATIONS -
dc.citation.number 1 -
dc.citation.title Studies in Applied Mathematics -
dc.citation.volume 154 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Mathematics -
dc.relation.journalWebOfScienceCategory Mathematics, Applied -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이두석
Lee, Doo Seok이두석

Department of Liberal Arts and Sciences

read more

Total Views & Downloads