Detail View

Evaluating the Scalability of Soft Foreign Object Detection in Dry Foods Using Sub-Terahertz Radar and Deep-learning techniques
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Song, Seungeon -
dc.contributor.author Kwak, Donghoon -
dc.contributor.author Kim, Youngduk -
dc.contributor.author Lee, Jonghun -
dc.date.accessioned 2024-12-08T18:40:13Z -
dc.date.available 2024-12-08T18:40:13Z -
dc.date.created 2024-11-01 -
dc.date.issued 2024-09-06 -
dc.identifier.isbn 9798350370324 -
dc.identifier.issn 2162-2027 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57268 -
dc.description.abstract This study evaluates the scalability of using sub-terahertz (THz) radar-based deep-learning techniques for automatically detecting soft foreign objects in dry foods. Previous research [1] has demonstrated that soft foreign objects can be detected with over 99% accuracy using deep learning models such as ResNet50-Fast R-CNN, combined with preprocessed transmission images. In this paper, we aim to assess the applicability to various food groups and packaging materials by constructing and analyzing a database of images acquired through sub-THz radar and area scanners. © 2024 IEEE. -
dc.language English -
dc.publisher IEEE Computer Society -
dc.relation.ispartof International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz -
dc.title Evaluating the Scalability of Soft Foreign Object Detection in Dry Foods Using Sub-Terahertz Radar and Deep-learning techniques -
dc.type Conference Paper -
dc.identifier.doi 10.1109/IRMMW-THz60956.2024.10697861 -
dc.identifier.wosid 001334520200334 -
dc.identifier.scopusid 2-s2.0-85207177814 -
dc.identifier.bibliographicCitation Song, Seungeon. (2024-09-06). Evaluating the Scalability of Soft Foreign Object Detection in Dry Foods Using Sub-Terahertz Radar and Deep-learning techniques. 49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024, 1–2. doi: 10.1109/IRMMW-THz60956.2024.10697861 -
dc.identifier.url https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697624 -
dc.citation.conferenceDate 2024-09-01 -
dc.citation.conferencePlace AT -
dc.citation.conferencePlace Perth -
dc.citation.endPage 2 -
dc.citation.startPage 1 -
dc.citation.title 49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

송승언
Song, Seungeon송승언

Division of Mobility Technology

read more

Total Views & Downloads