Detail View

DC Field Value Language
dc.contributor.author Jeong, Hong In -
dc.contributor.author Jung, Hye Sung -
dc.contributor.author Lee, Cheong Beom -
dc.contributor.author Kim, So Jung -
dc.contributor.author Jo, Jeong-Sik -
dc.contributor.author Song, Seongkyu -
dc.contributor.author Ko, Seo-Jin -
dc.contributor.author Kang, Dong-Won -
dc.contributor.author Jeong, Soon Moon -
dc.contributor.author Jang, Jae-Won -
dc.contributor.author Kim, Kyeounghak -
dc.contributor.author Lee, Jihoon -
dc.contributor.author Choi, Hyosung -
dc.date.accessioned 2024-12-22T19:10:17Z -
dc.date.available 2024-12-22T19:10:17Z -
dc.date.created 2024-11-01 -
dc.date.issued 2024-12 -
dc.identifier.issn 1369-7021 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57345 -
dc.description.abstract Harnessing the potential of mechanoluminescence (ML) for practical applications necessitates innovations that maximize brightness while simplifying the platform. Our study introduces a pioneering interfacial modification technique that enhances the internal triboelectric field in a self-recoverable ML platform based on zinc sulfide@metal oxide phosphor and a polydimethylsiloxane matrix. By chemically functionalizing the surface of metal oxide shells with benzoic acid derivatives, we modulate surface charge density thereby intensifying the triboelectric field within the ML platform. Utilizing a range of derivatives with varying dipole moments establishes a direct relationship between dipole moment strength and triboelectric enhancement. Notably, introducing aminobenzoic acid (ABA) onto the surface of the aluminum oxide (AlOx) shell results in a significant increase in ML brightness. Our strategy to easily adjust the ML brightness has been applied to anti-counterfeiting applications. Our study not only reveals the correlation between surface triboelectric fields and ML performance but also provides the possibility for practical use of self-recoverable ML platforms in various application fields, including smart textiles, health monitoring systems, and wearable displays. © 2024 Elsevier Ltd -
dc.language English -
dc.publisher Elsevier -
dc.title Interfacial dipole moment engineering in self-recoverable mechanoluminescent platform -
dc.type Article -
dc.identifier.doi 10.1016/j.mattod.2024.09.020 -
dc.identifier.wosid 001381052100001 -
dc.identifier.scopusid 2-s2.0-85206975462 -
dc.identifier.bibliographicCitation Jeong, Hong In. (2024-12). Interfacial dipole moment engineering in self-recoverable mechanoluminescent platform. Materials Today, 81, 4–11. doi: 10.1016/j.mattod.2024.09.020 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Self-recoverable -
dc.subject.keywordAuthor Dipole moment -
dc.subject.keywordAuthor Triboelectric field -
dc.subject.keywordAuthor Surface functionalization -
dc.subject.keywordAuthor Mechanoluminescence -
dc.citation.endPage 11 -
dc.citation.startPage 4 -
dc.citation.title Materials Today -
dc.citation.volume 81 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Materials Science -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

고서진
Ko, Seo-Jin고서진

Department of Energy Science and Engineering

read more

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: