Detail View

Compact Solid Electrolyte Interface Realization Employing Surface-Modified Fillers for Long-Lasting, High-Performance All-Solid-State Li-Metal Batteries
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Jamal, Hasan -
dc.contributor.author Khan, Firoz -
dc.contributor.author Kim, Ji Hoon -
dc.contributor.author Kim, Eunhui -
dc.contributor.author Lee, Sang Uck -
dc.contributor.author Kim, Jae Hyun -
dc.date.accessioned 2024-12-23T19:10:19Z -
dc.date.available 2024-12-23T19:10:19Z -
dc.date.created 2024-07-19 -
dc.date.issued 2024-11 -
dc.identifier.issn 1613-6810 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57362 -
dc.description.abstract The implementation of polymer-based Li-metal batteries is hindered by their low coulombic efficiency and poor cycling stability attributed to continuous electrolyte decomposition. Enhancement of the solid electrolyte interface (SEI) stability is key to mitigating electrolyte decomposition. This study proposes surface-functionalized silica mesoball fillers to fabricate a composite polymer electrolyte (MSBM-CPE). As a result of surface modification, the polyethylene oxide matrix benefits from the uniform distribution of the filler, which provides a large surface area and Lewis acid sites. Molecular dynamics simulations reveal that the dissociation energy of lithium bis(trifluoromethanesulfonyl)imide in the filler is fourfold higher (−1.95eV) than that of the filler-free electrolyte. Consequently, the MSMB-CPE diffusivity is 30 times higher than its filler-free counterpart. The MSMB-CPE of ionic conductivity of 1.16 × 10−2Scm−1 @60 °C and a venerable Li-ion transference number of 0.81. The excellent compatibility of MSMB-CPE with the Li anode is demonstrated by its stable symmetric cell performance under high current density (200µA cm−2 @60 °C) for over 5000h. Approximately 85.60% retention capacity of the [Li/MSMB-CPE/LiFePO4] full cell after 700 cycles. Furthermore, compositional analysis reveals that the SEI layer in MSMB-CPE is smooth with fewer by-products at the electrolyte/Li interface. © 2024 Wiley-VCH GmbH. -
dc.language English -
dc.publisher Wiley -
dc.title Compact Solid Electrolyte Interface Realization Employing Surface-Modified Fillers for Long-Lasting, High-Performance All-Solid-State Li-Metal Batteries -
dc.type Article -
dc.identifier.doi 10.1002/smll.202402001 -
dc.identifier.wosid 001262238000001 -
dc.identifier.scopusid 2-s2.0-85197902955 -
dc.identifier.bibliographicCitation Jamal, Hasan. (2024-11). Compact Solid Electrolyte Interface Realization Employing Surface-Modified Fillers for Long-Lasting, High-Performance All-Solid-State Li-Metal Batteries. Small, 20(45). doi: 10.1002/smll.202402001 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor surface modifications -
dc.subject.keywordAuthor composite solid-state electrolytes -
dc.subject.keywordAuthor high ionic conductivities -
dc.subject.keywordAuthor inorganicfillers -
dc.subject.keywordAuthor molecular dynamics simulations -
dc.subject.keywordPlus LITHIUM-METAL -
dc.subject.keywordPlus POLYMER ELECTROLYTE -
dc.subject.keywordPlus IONIC-CONDUCTIVITY -
dc.subject.keywordPlus SILICA NANOPARTICLES -
dc.citation.number 45 -
dc.citation.title Small -
dc.citation.volume 20 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김재현
Kim, Jae Hyun김재현

Division of Energy & Environmental Technology

read more

Total Views & Downloads