Detail View

Title
Suppressing organic cation reactivity in locally concentrated ionic liquid electrolytes for lithium metal batteries
Issued Date
2025-01
Citation
Energy Storage Materials, v.74
Type
Article
Author Keywords
Co-solventsDonor numberIonic liquidsOrganic cations
Keywords
ENERGIESPOLARITYPERFORMANCEAPPROXIMATIONELECTRODESENERGETICS
ISSN
2405-8297
Abstract

The quest for highly stable ionic liquid electrolytes is vital for longer, safer cycling of Li-metal batteries (LMBs), given their nonflammable nature and broad electrochemical window. Locally concentrated ionic liquid electrolytes (LCILEs) have emerged by incorporating anti-solvating co-solvents to address the high viscosity and poor conductivity of Li+-concentrated ionic liquids. Although solvation and interface chemistry are crucial in determining cell performance, the impacts of organic cations in LCILEs remain overlooked. This work unravels the co-solvent-guided mediation of organic cation reactivity toward Li metal anodes. The donor number (DN) of co-solvents is found to significantly influence their local distribution within LCILEs, modulating Coulombic interactions between Li+–anion complexes and organic cations. Low DN co-solvents, such as hydrofluoroethers, hardly interact with Li+–anion complexes but dissociate and destabilize organic cations, adversely promoting organic cation decomposition at Li metal anodes. Conversely, high DN co-solvents prefer to occupy the Li+ solvation sheath, promoting organic cation–anion association and mitigating the cathodic decomposition. Suppressing the reactivity of organic cations in LCILEs is essential for proper anion-derived solid-electrolyte interphase formation and stable cycling of LMBs. The controlled reactivity of organic cations in concentrated ionic liquid electrolytes incorporating high DN co-solvent enables stable cycling of LMBs under stringent conditions, achieving 95 % capacity retention over 200 cycles. © 2024 Elsevier B.V.

더보기
URI
http://hdl.handle.net/20.500.11750/57470
DOI
10.1016/j.ensm.2024.103966
Publisher
Elsevier
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이호춘
Lee, Hochun이호춘

Department of Energy Science and Engineering

read more

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: