Detail View

An algebraic C 2-equivariant Bézout theorem
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Costenoble, Steven R. -
dc.contributor.author Hudson, Thomas -
dc.contributor.author Tilson, Sean -
dc.date.accessioned 2024-12-31T17:40:23Z -
dc.date.available 2024-12-31T17:40:23Z -
dc.date.created 2024-08-05 -
dc.date.issued 2024-07 -
dc.identifier.issn 1472-2747 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57480 -
dc.description.abstract One interpretation of Bézout’s theorem, nonequivariantly, is as a calculation of the Euler class of a sum of line bundles over complex projective space, expressing it in terms of the rank of the bundle and its degree. We generalize this calculation to the C2 –equivariant context, using the calculation of the cohomology of C2 –complex projective spaces from an earlier paper, which used ordinary C2 –cohomology with Burnside ring coefficients and an extended grading necessary to define the Euler class. We express the Euler class in terms of the equivariant rank of the bundle and the degrees of the bundle and its fixed subbundles. We do similar calculations using constant Z coefficients and Borel cohomology and compare the results. © 2024 MSP (Mathematical Sciences Publishers). -
dc.language English -
dc.publisher Mathematical Sciences Publishers -
dc.title An algebraic C 2-equivariant Bézout theorem -
dc.type Article -
dc.identifier.doi 10.2140/agt.2024.24.2331 -
dc.identifier.wosid 001273914700017 -
dc.identifier.scopusid 2-s2.0-85200791329 -
dc.identifier.bibliographicCitation Costenoble, Steven R. (2024-07). An algebraic C 2-equivariant Bézout theorem. Algebraic and Geometric Topology, 24(4), 2331–2350. doi: 10.2140/agt.2024.24.2331 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor equivariant cohomology -
dc.subject.keywordAuthor projective space -
dc.subject.keywordAuthor equivariant characteristic classes -
dc.subject.keywordAuthor Bézout&apos -
dc.subject.keywordAuthor s theorem -
dc.citation.endPage 2350 -
dc.citation.number 4 -
dc.citation.startPage 2331 -
dc.citation.title Algebraic and Geometric Topology -
dc.citation.volume 24 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Mathematics -
dc.relation.journalWebOfScienceCategory Mathematics -
dc.type.docType Article -
Show Simple Item Record

File Downloads

공유

qrcode
공유하기

Total Views & Downloads