Detail View

Development of High-Performance Membrane for Aqueous Zinc-Bromine Flow/Flowless Batteries
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Development of High-Performance Membrane for Aqueous Zinc-Bromine Flow/Flowless Batteries
Alternative Title
수성 아연-브롬 흐름/무흐름 전지를 위한 고성능 분리막 개발
DGIST Authors
Dabin HanSangaraju ShanmugamHongkyung Lee
Advisor
상가라쥬 샨무감
Co-Advisor(s)
Hongkyung Lee
Issued Date
2024
Awarded Date
2024-08-01
Citation
Dabin Han. (2024). Development of High-Performance Membrane for Aqueous Zinc-Bromine Flow/Flowless Batteries. doi: 10.22677/THESIS.200000803424
Type
Thesis
Description
Redox flow/flowless battery, Ion exchange membrane, Polybromide capture, Crossover suppression, Zn deposition, High capacity
Abstract
2050 년까지 신재생 에너지로부터 전 세계 전력 공급의 50% 이상을 달성하는 것 요구됨에 따라, 산화 환원 흐름 전지(RFB)는 신재생 에너지원을 활용하기 위한 효과적인 대규모 에너지 저장 시스템(ESS)이 될 수 있다. 특히, Zn/Br2 RFB 는 저렴한 활물질 비용, 높은 셀 전압과 높은 에너지 밀도의 장점을 가지고 있어 유망한 대규모 ESS 후보로 여겨진다. Zn/Br2 RFB 에서 분리막은 산화▪환원 반응을 위한 이온수송을 하면서 양극과 음극의 전해질을 분리하여 단락을 막는 핵심 구성 요소 중 하나이다. 그러나 Zn/Br2 RFB 에 사용되는 상업용 다공성 막은 폴리브로마이드 (Brn-)교차를 일으켜 자가방전을 초래하고 낮은 용량 유지율을 가진다. 반면 상업용 이온교환막은 상대적으로 낮은 크로스오버를 가지지만 막 저항이 높아 원활한 이온 수송이 이루어지지 않아 낮은 전압 효율과 함께 아연 덴드라이트 형성으로 인한 문제점이 발생해 상용화가 지연되고 있다. 이러한 문제점들을 해결하기 위해 분리막 소재의 연구가 지속적으로 이루어지고 있으며, 본 연구에서는 높은 이온 전도도와 Brn- 교차가 억제된 분리막이 개발되었다. 구체적으로, 과불화술폰산(PFSA)인 Nafion 에 Amphoteric SiO2가 도입된 복합막 (NF/Am-SiO2), Br-이 전도될 수 있는 작용기를 가지는 음이온 공유 유기 골격체(Cationic COF) 복합막 (NF/Cationic COF), Sulfonated Poly(ether ehther ketone), (SPEEK)에 아민기과 술폰산기가 동시에 기능화된 MOF(UNH-SO3H)가 도입된 복합막(SPEEK/U-NH-SO3H)을 개발 및 분석하였다. Am-SiO2, Cationic COF, U-NH-SO3H 의 도입은 기존의 이온 교환 소재에 높은 이온 전도도를 제공하고, 더 작은 이온 채널 형성으로부터 Brn-의 투과를 감소시킴과 동시에 Brn- 캡처 능력을 가졌다. 뿐만 아니라, Zn2+와 Br-이 모두 수송될 수 있는 bi-ionic 수송 특성은 우수한 전압 효율을 보여줌과 동시에 균일한 아연 증착에 기여했다. 더나아가, 국부 전류 및 불균일한 Zn2+ 수송만이 아연 돌기 형성에 관여하는 것이 아니라 Brn- 교차 또한 영향을 주는 것을 발견하였다. 균일한 아연 증착과 Brn-의 교차 억제는 상업용 분리막 대비 높은 배터리 성능을 가지며 장기 작동하는 것에 시너지 역할을 하였다. 더나아가, 실질적인 저가격 배터리의 실현을 위해 펌프가 제거된 Zn-Br2 flowless battery (Zn/Br2 FLB)가 설계되었고 우수한 성능을 가지는 Am-SiO2와 U-NH-SO3H 복합막을 도입하여 저비용 및 고용량의 실질적 Zn/Br2 FLB 를 성공적으로 시연하였다.|As the goal is to achieve more than 50% of the world's electricity demand from renewable energy by 2050, redox flow batteries (RFB) can be effective grid-scale energy storage systems (ESSs) for utilizing intermittent renewable energy sources. Among them, the Zn/Br2 RFB is considered a promising candidate for large-scale ESS due to its advantages of low active material cost, high cell voltage, and high energy density. In the Zn/Br2 RFB, the membrane is one of the core components as it separates the anolyte and catholyte to prevent short circuits and enables ion transport during redox reactions. However, commercial porous membranes use in Zn/Br2 RFBs cause high polybromide crossover, resulting in self-discharge with low capacity retention. On the other hand, commercial ion exchange membranes exhibit a relatively low crossover, but their high membrane resistance impedes facile ion transport, resulting in low voltage efficiency and zinc dendrite formation and delaying their commercialization. To address these issues, several studies on membranes are being conducted. In this study, membranes with high ion conductivity and suppressed polybromide crossover are developed and analyzed. Specifically, composite membranes incorporating Amphoteric SiO2 (Am-SiO2) into Perfluorosulfonic acid (PFSA), cationic covalent organic framework (COF) with functional groups capable of conducting Br-, and both amine and sulfonic acid groups on MOF (U-NH-SO3H) into sulfonated Poly(ether ether ketone), (SPEEK) were developed and analyzed. The incorporation of Am-SiO2, Cationic COF, and U-NH-SO3H provided high ion conductivity to conventional ion exchange materials and suppressed polybromide diffusion by forming smaller ion channels with polybromide capture capability. In addition, the bi-ionic transport property, which allows both Zn2+ and Br- to be transported, contributed to uniform zinc deposition while showing excellent voltage efficiency. Furthermore, it was investigated that polybromide crossover, including localized current and non-uniform Zn2+ transport, all affect Zn dendrite formation. The uniform Zn deposition and suppression of polybromide diffusion synergized for long-term operation with excellent battery performance compared to commercial membranes.
Moreover, a Zn-Br2 flowless battery (Zn/Br2 FLB) without a pump system was designed to realize practical, low-cost batteries. The high-performance Am-SiO2 and U-NH-SO3H composite membranes were successfully applied and demonstrated cost-effectiveness and high-capacity Zn/Br2 FLB.
Table Of Contents
CHAPTER Ⅰ. INTRODUCTION
1.1 Theoretical background 1
1.2 The fundamentals of aqueous RFB 2
1.3 Various RFB types 3
1.4 Problem description and current understanding 5
1.4.1 Zn dendrite 6
1.4.2 Polybromide crossover 7
1.4.3 Bi-ionic transportability for membrane 8
1.5 Mitigation strategies for the challenges of Zn/Br2 RFB and Zn/Br2 FLB 10
1.5.1 Modified porous membranes 10
1.5.2 Modified ion exchange membranes 12
1.6 Motivation and goal of this dissertation 15

CHAPTER ⅠI. EXPERIMENTAL METHODOLOGY
2.1 Materials 18
2.2 Preparation of cationic covalent organic framework (CC) 18
2.3 Preparation of amphoteric functionalized SiO2 19
2.4 Preparation of functionalized UiO-66 19
2.5 Preparation of sulfonated poly(ether ether ketone) 20
2.6 Preparation of composite membrane 21
2.6.1 Nafion-based composite membrane 21
2.6.2 SPEEK-based composite membrane 21
2.7 Characterization techniques 22
2.8 Water uptake, swelling degree, ion exchange capacity (IEC) 22
2.9 Ion conductivity of membrane 23
2.10 Measurements of Br2 permeability and ion selectivity 24
2.11 Measurements of transference number 25
2.12 Measurements of Zn/Br2 redox flow battery performance 25
2.13 Measurements of Zn/Br2 flowless battery performance 26

CHAPTER ⅠII. Cationic Covalent Organic Framework Composite Membrane for Zn/Br2 Redox Flow Battery
3.1 Introduction 27
3.2 Results and Discussion 28
3.2.1 Characterization of CC and NF/CC 28
3.2.2 Zn/Br2 RFB Single-cell Performance 38
3.3 Summary 42

CHAPTER ⅠV. Active Material Crossover Suppression With Bi-ionic Transportability By Amphoteric Membrane For Zn/Br2 Redox Flow Battery
4.1 Introduction 43
4.2 Results and Discussion 46
4.2.1 Characterization of Am-SiO2 46
4.2.2 Properties of membrane 51
4.2.3 Zn/Br2 RFB Single-cell Performance 60
4.3 Summary 72

CHAPTER V. Highly Durable Non-fluoride-based Membrane With High Selectivity For Zn/Br2 Redox Flow Battery
5.1 Introduction 73
5.2 Results and Discussion 76
5.2.1 SD optimization of SPEEK for Zn/Br2 RFB 76
5.2.2 Preparation of U-NH-SO3H 81
5.2.3 Physicochemical properties of SPEEK/U-NH-SO3H 93
5.2.4 Zn/Br2 RFB Single-cell Performance 98
5.2.5 Post-analysis of membrane 102
5.3 Summary 107

CHAPTER VI. High-energy Efficiency and Cost-effective Zn/Br2 Flowless Battery: Utilizing the High-performance Composite Membrane
6.1 Introduction 109
6.2 Understanding Zn/Br2 FLB 110
6.3 Zn/Br2 FLB performance of NF/Am-SiO2 112
6.4 Summary of Zn/Br2 FLB with NF/Am-SiO2 118
6.5 Membrane Properties of NF/U-NH-SO3H 118
6.6 Zn/Br2 FLB performance of NF/U-NH-SO3H 127
6.7 Summary of Zn/Br2 FLB with NF/U-NH-SO3H 141

CHAPTER VII. CONCLUSIONS 142
REFERENCES 144
국문요약문 153
URI
http://hdl.handle.net/20.500.11750/57585
http://dgist.dcollection.net/common/orgView/200000803424
DOI
10.22677/THESIS.200000803424
Degree
Doctor
Department
Department of Energy Science and Engineering
Publisher
DGIST
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads