Taeyeong Yong. (2024). The Integrated Study on Stabilization and Passivation Strategy via Strengthened Synergetic Interaction with Lead Halide Perovskite Precursor. doi: 10.22677/THESIS.200000798079
Type
Thesis
Description
perovskite solar cells, stabilizer, hydrogen bond, precursor
Abstract
결함이 낮은 고품질 페로브스카이트 층은 고효율 태양 전지를 발전시키는 데 매우 중요합니다. 그러나 몇 가지 문제는 특히 유기 양이온 및 요오드 이온과 같은 주요 문제가 있는 불안정성을 남기는 페로브스카이트 잉크로 인해 재현성을 갖춘 지속 가능한 페로브스카이트 태양전지를 향한 몇 가지 과제를 여전히 제기합니다. 페로브스카이트 전구체를 안정화하기 위해 우선적으로 처리하는 주요 사항을 설명합니다. 저희의 전략은 포름아미디늄 이온 (FA+)인 주요 유기 양이온과의 강화된 수소결합에 초점을 맞추고 FA+와 탈양성화된 메틸 아민 (MA) 사이의 비가역적 반응을 크게 억제합니다. 이러한 문제를 해결하기 위해서 3-메르캅토벤조산 (3-MBA)을 첨가제로 도입하는 전략을 고안했습니다. 그 결과 페로브스카이트 잉크는 최대 140일 동안 초기 효율의 96% 이상을 유지했습니다. 마찬가지로 중요한 것으로, 페로브스카이트 층에서 생성된 많은 결함이 3-MBA의 배위 시스템에 의해 부동태화된다는 것입니다. 따라서 페로브스카이트 전구체 잉크와 필름을 모두 관리하는 통합 전략을 강조합니다. 3-MBA 첨가제가 포함된 역 구조 페로브스카이트 태양 전지는 24.31%의 인상적인 효율을 나타내며 30 ± 5%의 RH에 노출된 후에도 초기 효율의 96% 이상을 유지합니다.|A high-quality perovskite layer with low defects is critical for advancing high-efficiency solar cells. However, a few issues still pose several challenges toward sustainable PSCs with reproducibility, particularly, due to perovskite inks, which leave major problematic instability such as organic cations and iodide ions. Here, we unravel major points that preferentially deal with to stabilize the perovskite precursors. Our strategy focuses on the strengthened hydrogen bonding with the major organic cation which is formamidinium ion (FA+), significantly inhibits irreversible reaction between FA+ and deprotonated methylamine (MA). To address these issues, we devised a strategy to introduce 3-mercaptobenzoic acid (3-MBA) as an additive. Consequently, perovskite inks maintained more than 96% of initial PCE for up to 140d. Equally important, a number of defects created in the perovskite layer are passivated by the coordination system of 3-MBA. Thereby, we highlight the integrated strategy to manage both perovskite precursor inks and films. The inverted PSCs with 3-MBA additive exhibit an impressive PCE of 24.31% and maintain over 96% of their initial PCE even after exposure to RH of 30 ± 5%.
Table Of Contents
List of Contents Abstract i List of contents ii List of tables iii List of figures vi
Ⅰ. Introduction 1 1.1 Emerging perovskite solar cells with overcoming their structural instability 1 1.2 Instability of the perovskite precursors 1 1.3 The integrated strategy to regulate perovskite precursors and films 2
Ⅱ. Experimental 4 2.1 materials 4 2.2 The preparation of perovskite solutions 4 2.3 The preparation of anodized nickel oxide (A-NiO) 4 2.4 Device fabrication 5 2.5 Characterization of perovskite film and devices 6 2.5.1 Note 1 6 2.5.2 Note 2 7 2.5.3 Note 3 7 2.5.4 Note 4 7 2.5.5 Note 5 8 2.5.6 Note 6 8
Ⅲ. Results and discussion 9 3.1 Characterization of perovskite films and precursors 9 3.2 Stabilization of 3-MBA in perovskite precursor 11 3.3 Film properties of 3-MBA-treated perovskite films 15 3.4 Photovoltaic performance 17 3.5 Stability test of perovskite films and devices 18