Detail View

Computational Insights into Additive-Driven Improvements in Ionic Liquid Electrolytes for Lithium-Ion-Batteries.
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Computational Insights into Additive-Driven Improvements in Ionic Liquid Electrolytes for Lithium-Ion-Batteries.
DGIST Authors
Akter ShanjidaSeungho ChoeHongkyung Lee
Advisor
최승호
Co-Advisor(s)
Hongkyung Lee
Issued Date
2024
Awarded Date
2024-08-01
Citation
Akter Shanjida. (2024). Computational Insights into Additive-Driven Improvements in Ionic Liquid Electrolytes for Lithium-Ion-Batteries. doi: 10.22677/THESIS.200000801085
Type
Thesis
Description
Ionic liquid electrolyte, RDF, Lithium-ion-batteries, Additives, Molecular Dynamic simulation
Abstract
Locally concentrated ionic liquid (LCIL) electrolytes significantly influence electrochemical processes and battery performance. In this study, we use Molecular Dynamics simulations to examine how a diluent affects the structural, dynamic, and transport properties of Li+ in an LCIL electrolyte for lithium-ion batteries (LIBs). The LCIL is composed of lithium bis(fluorosulfonyl)imide (LiFSI) serving as the salt, 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (pyr13FSI) functioning as the solvent, and 1,1,2,2-tetrafluoroethylene 2,2,3,3-tetrafluoropropyl ether (TTE) acting as the diluent. Adding TTE decreases the quantity of free solvent molecules and enhances the coordination between Li+ and FSI- ions, leading to a more stable Li+ solvation sheath. This also improves Li+ transport properties, such as the diffusion coefficient and transference number, which are critical for designing effective electrolytes for LIBs. However, we also analyzed the effects of different salts and solvation ratios on the characteristics of Li-ion coordination environments and their dynamic and transport properties. Notably, adding a minimal amount of lithium hexafluorophosphate (LiPF6) salt to the electrolyte significantly reduces the number of free solvent molecules in the system. This addition enhances the dynamic properties of Li-ions. Our findings offer a deeper atomic-level understanding of Li+ dynamics and transport properties, contributing to developing advanced electrolytes for future lithium-ion batteries.|국소적으로 농축된 이온성 액체(LCIL) 전해질은 전기화학적 과정과 배터리 성능에 큰 영향을 미칩니다. 본 연구에서는 분자 동력학 시뮬레이션을 사용하여 희석제가 리튬 이온배터리(LIB)를 위한 LCIL 전해질 내에서 Li+의 구조적, 동적 및 전송 특성에 어떻게 영향을 미치는지 조사합니다. LCIL 은 염으로 리튬 비스(플루오로설포닐)이미드(LiFSI), 용매로 1-메틸-1-프로필피롤리디늄 비스(플루오로설포닐)이미드(pyr13FSI), 희석제로 1,1,2,2-테트라플루오로에틸렌 2,2,3,3-테트라플루오로프로필 에테르(TTE)로 구성됩니다. TTE 를 첨가하면 자유 용매 분자의 양이 감소하고 Li+와 FSI- 이온 간의 배위수가 향상되어 보다 안정적인 Li+ 용매화층이 형성됩니다. 이는 확산 계수 및 이동도 수 같은 Li+ 전송 특성을 향상시키며, 이는 LIB 를 위한 효과적인 전해질 설계에 중요합니다. 우리는 또한 다양한 염과 용매화 비율이 Li 이온 배위 환경의 특성과 동적 및 전송 특성에 미치는 영향을 분석했습니다. 특히, 전해질에 소량의 리튬 헥사플루오로포스페이트(LiPF6) 염을 첨가하면 시스템 내 자유 용매 분자의 수가 크게 감소합니다. 이 염의 첨가는 Li 이온의 동적 특성을 향상시킵니다. 우리의 연구 결과는 Li+의 동역학 및 전송 특성에 대한 더 깊은 원자 수준의
이해를 제공하며, 미래의 리튬 이온 배터리를 위한 진보한 전해질 개발에 기여할 것입니다.
Table Of Contents
Chapter 1: Introduction 1
1.1. Background 1
1.2. Research Objectives 2
Chapter 2: Methodology 4
2.1. Introduction to MD simulation and its capabilities 4
2.2. Explanation of simulation setup 5
2.3. Energy Minimization 5
2.4. Force Field 6
Chapter 3: Electrolyte Preparation 8
Chapter 4: Result & Discussion 10
4.1. Effect of TTE 10
4.1.1. Structural Properties 10
4.1.2. Transport Properties: 12
4.2. Effect of different salt/ionic liquid ratios 16
4.2.1. Structural Properties 16
4.2.2. Transport Properties: 17
4.3. Effect of different salts 19
4.3.1. Structural Properties 19
4.3.2. Transport Properties: 21
Chapter 5: Conclusion 23
References: 25
요 약 문 29
URI
http://hdl.handle.net/20.500.11750/57623
http://dgist.dcollection.net/common/orgView/200000801085
DOI
10.22677/THESIS.200000801085
Degree
Master
Department
Department of Energy Science and Engineering
Publisher
DGIST
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads