Detail View

Silicon Etching Using Copper-Metal-Assisted Chemical Etching: Unveiling the Role of Cu2O in Microscale Structure Fabrication
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Silicon Etching Using Copper-Metal-Assisted Chemical Etching: Unveiling the Role of Cu2O in Microscale Structure Fabrication
Issued Date
2025-01
Citation
Lee, Eunsol. (2025-01). Silicon Etching Using Copper-Metal-Assisted Chemical Etching: Unveiling the Role of Cu2O in Microscale Structure Fabrication. ACS Applied Materials & Interfaces, 17(1), 2566–2576. doi: 10.1021/acsami.4c17500
Type
Article
Author Keywords
silicon microstructurescyclic redox reactioncopper(I) oxidegalvanicreactionmetal-assisted chemical etching (MACE)oxide-assistedchemical etching (OACE)
Keywords
MECHANISMOXIDES
ISSN
1944-8244
Abstract
Achieving precise and cost-effective etching in the field of silicon three-dimensional (3D) structure fabrication remains a significant challenge. Here, we present the successful fabrication of microscale anisotropic Si structures with an etching anisotropy of 0.73 using Cu-metal-assisted chemical etching (Cu-MACE) and propose a mechanism to elucidate the chemical behavior of Cu within the MACE solution. Our study reveals the formation of cuprous oxide (Cu2O) within Cu thin films in the presence of hydrogen peroxide (H2O2), which plays a key role in Si etching. We propose that the holes generated through the reduction of Cu2O back to Cu are transferred to Si, promoting its etching through a galvanic reaction with Cu2O. This Cu-Cu2O cyclic redox process in the Si-Cu2O galvanic cell under the right conditions enables continuous etching of Si and significantly improves the chemical stability of Cu-MACE. Building on this cyclic process mechanism, we demonstrate the catalytic potential of Cu2O for oxide-assisted chemical etching (OACE) by directly using Cu2O in both thin-film and particle forms, rather than starting from Cu. This study opens possibilities for the precise control of Cu-MACE, extends the existing MACE mechanism, and contributes to our understanding of transition metal oxide behavior in OACE. © 2024 American Chemical Society.
URI
http://hdl.handle.net/20.500.11750/57792
DOI
10.1021/acsami.4c17500
Publisher
American Chemical Society
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads