Metalloenzymes in biological systems utilize dioxygen to perform oxidation reactions with external substrates via various metal-oxygen adducts including metal-superoxo, metal- (hydro)peroxo, and metal-oxo species. However, due to the enormous and complexity of metalloenzymes, investigating their reaction mechanisms is challenging. Therefore, synthetic biomimetic complexes are commonly used to study and elucidate oxidation mechanisms. Recently, metal-peroxo species have gained significant attention for not only nucleophilic reactions but also electrophilic reactions with ambiphilic reactions. In this dissertation, we focus on the mechanistic investigations of oxidative reactions by cobalt(III)-peroxo species. In Chapter 1, two different cobalt(III)-peroxo complexes with distinct spin states were synthesized by controlling the steric effects of the ligands, and their properties were analyzed by various physicochemical methods. The nitrile activation reaction products, hydroximatocobalt(III) complexes, were generated in an S = 1 spin state of cobalt(III)-peroxo complexes. Density functional theory calculations revealed that sterically bulkiness of the ligand induced a weak ligand field, resulting in an S = 1 spin state, and elucidated the mechanism of nitrile activation with cobalt(III)-peroxo complexes. In Chapter 2, the elongation of the O–O bond in the cobalt(III)-peroxo complex was observed through in-situ single-crystal X-ray diffraction analysis under external light irradiation. Furthermore, during the photoirradiation onto cobalt(III)-peroxo complex, the ligand-oxidized cobalt(III)-hydroxo complex was formed by photo-induced intramolecular C–H bond activation, as demonstrated by infrared photodissociation spectroscopy and computational methods. Additionally, the ligand-oxidized cobalt(III)-hydroxo species was found to exhibit hydrogen atom transfer (HAT) reactivity. These findings provide a deeper insight into the oxidation reactions mediated by cobalt(III)-peroxo species, which are expected to lay the groundwork for developing efficient catalysts. |생체 내 금속 효소는 산소를 이용해 여러 금속-산소 중간체를 형성하며 외부 기질과의 산화 반응을 수행한다. 그러나 금속 효소의 크기와 복잡성으로 인해 반응 메커니즘을 연구하는 데 어려움이 있기에 생체모방화합물을 활용하여 반응 메커니즘 규명 연구를 진행하고 있다. 본 학위 논문에서는 생체모방화합물인 코발트(III)-퍼옥소 종이 수행하는 다양한 산화 반응에서 금속의 스핀 상태와의 연관성과 빛에 의한 반응에 대한 반응 메커니즘을 규명하였다. 제1장에서는 리간드의 입체적 효과를 조절하여 서로 다른 스핀 상태를 가지는 두 종류의 코발트(III)-퍼옥소 착물을 합성하였고, 여러 물리화학적 분석을 통해 그 특성을 비교하였으며, 스핀 상태에 따른 나이트릴 활성 반응 생성물인 코발트(III)-하이드록시메이토 화합물이 형성 여부를 확인하였다. 밀도범함수이론을 통해 리간드의 입체적 부피가 큰 경우 약한 리간드 장 형성으로 인해 S = 1 스핀 상태가 되는 것을 설명하였으며, 이와의 나이트릴 활성 반응 메커니즘을 정리하였다. 제2장에서는 단결정 X선 회절 분석 결과로 빛에 의해서 코발트(III)-퍼옥소 화합물의 산소-산소 결합 길이가 늘어나는 과정을 관찰했다. 용매 조건하에서 빛에 의해 내부 탄소-수소 결합 활성화된 코발트(III)-하이드록소종이 생성되는 것을 계산화학과 적외선 분광법을 활용한 결합 세기 실험을 통해 확인했다. 또한, 빛에 의해 생성된 코발트(III)-하이드록소종은 수소 원자 이동 반응성을 보였다. 이러한 연구 결과들은 코발트(III)-퍼옥소 종의 산화 반응에 대한 반응 메커니즘을 규명하여 고효율 촉매의 기초가 될 것으로 기대된다.