WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | 이호춘 | - |
| dc.contributor.author | Yewon Park | - |
| dc.date.accessioned | 2025-02-28T21:02:03Z | - |
| dc.date.available | 2025-03-01T06:00:32Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/58036 | - |
| dc.identifier.uri | http://dgist.dcollection.net/common/orgView/200000828499 | - |
| dc.description | Magnesium metal batteries, Zn protective interphase, solvation structure optimization, phosphate additive | - |
| dc.description.abstract | The development of next-generation energy storage technologies has driven interest in magnesium metal batteries (MMBs) due to their high energy density, cost-efficiency, and abundance of magnesium resources. However, achieving stable Mg²⁺ plating/stripping and enhancing electrode-electrolyte interfacial stability remain critical challenges. This study addresses these issues through a two-pronged strategy: (1) the fabrication of a zinc-based protective interphase on the magnesium metal anode and (2) the modification of the solvation structure within glyme-based electrolytes. The ex-situ deposition of a Zn coating on the Mg surface significantly mitigates the formation of a resistive passivation layer, leading to enhanced cycling stability and reduced overpotentials. Electrochemical impedance spectroscopy (EIS) reveals a substantial decrease in interfacial resistance, enabling stable cycling for over 150 cycles at a current density of 0.5 mA cm⁻². Concurrently, the introduction of triethyl phosphate (TEP) as a co-solvent in diglyme (G2)-based electrolytes optimizes the Mg²⁺ solvation environment. This approach suppresses the formation of contact ion pairs (CIPs) while promoting solvent-separated ion pairs (SSIPs), facilitating more efficient ion transport. The optimized electrolyte formulation (G2:TEP = 10:1(v:v)) exhibits superior ionic conductivity and Coulombic efficiency, achieving 97.5% efficiency over 100 cycles at a current density of 0.5 mA cm⁻². Full-cell evaluations using a PTCDA organic cathode highlight the synergistic benefits of the Zn protective interphase and the modified electrolyte, with the Zn-Mg | - |
| dc.description.abstract | PTCDA cell delivering an initial capacity of 48.6 mAh g⁻¹ and maintaining 25 mAh g⁻¹ after 50 cycles at a 0.5C rate. This work offers a comprehensive approach to overcoming the interfacial and solvation-related challenges in MMBs, advancing the development of high-performance, cost-effective, and scalable magnesium-based energy storage systems. Keywords: Magnesium metal batteries, Zn protective interphase, solvation structure optimization, phosphate additive|차세대 에너지 저장 기술의 발전은 높은 에너지 밀도, 경제성, 및 풍부한 자원 매장량으로 인해 마그네슘 금속 전지(MMBs)에 대한 관심을 증가시키고 있다. 그러나, 안정적인 Mg²⁺의 도금/탈리(plating/stripping)와 전극-전해질 계면의 안정성 확보는 여전히 해결해야 할 핵심 과제로 남아있다. 본 연구에서는 이러한 문제를 해결하기 위해 두 가지 전략을 제안한다: (1) 마그네슘 금속 음극 표면에 아연(Zn) 기반 보호 계면층을 형성하는 방식과 (2) 글라임(glyme) 기반 전해질의 용매화 구조(solvation structure)를 제어하는 방법이다. Ex-situ 방식으로 Mg 표면에 Zn 코팅을 증착함으로써 불안정한 불활성 계면층의 생성을 억제하고, 과전압을 낮추며, 장기적인 사이클 안정성을 개선하였다. 전기화학 임피던스 분광법(EIS) 분석 결과, 계면 저항이 현저히 감소하여 0.5 mA cm⁻²의 전류 밀도에서 150회 이상의 안정적인 사이클 수명을 확인하였다. 동시에, 다이글라임(G2) 기반 전해질에 트리에틸 인산(Triethyl Phosphate, TEP)을 공동 용매로 도입하여 Mg²⁺의 용매화 환경을 최적화하였다. 이 과정에서 접촉 이온쌍(Contact Ion Pairs, CIPs)의 비율을 줄이고, 용매 분리 이온쌍(Solvent-Separated Ion Pairs, SSIPs)의 비율을 증가시켜 Mg²⁺ 이온의 전도도를 향상시켰다. 최적화된 전해질 조성(G2:TEP = 10:1)은 우수한 이온 전도도와 쿨롱 효율(Coulombic efficiency, CE)을 보여주었으며, 0.5 mA cm⁻²의 전류 밀도에서 100사이클 동안 97.5%의 효율을 달성하였다. 유기 음극 소재인 PTCDA를 활용한 풀 셀 평가 결과, Zn 보호 계면층과 용매화 구조가 최적화된 전해질의 시너지 효과가 확인되었다. Zn-Mg | - |
| dc.description.abstract | PTCDA 풀 셀은 초기 방전 용량 48.6 mAh g⁻¹을 기록했으며, 50사이클 후 25 mAh g⁻¹의 용량을 유지하였다. 본 연구는 MMB의 계면 및 용매화 문제를 해결하기 위한 포괄적인 접근 방안을 제시하며, 고성능, 경제적, 대규모 상용화가 가능한 마그네슘 기반 에너지 저장 시스템 개발에 기여할 수 있을 것으로 기대된다. | - |
| dc.description.tableofcontents | Abstract i List of contents ii List of tables iv List of figures v Ⅰ. Introduction 1 1.1 Mg battery 1 1.2 References 3 Ⅱ. A Zinc-based Protective Layer for Magnesium Metal Anode 5 2.1 Introduction 5 2.2 Experimental 6 2.2.1 Material Preparation 6 2.2.2 Fabrication of the Artificial Layer 7 2.2.3 Material Characterization 7 2.2.4 Electrochemical Measurements 7 2.3 Results and Discussion 8 2.3.1 Selection of Mg Surface Coating Material 8 2.3.2 Zn Coating Layer Optimization 11 2.3.3 Mg Metal Surface Characterization 12 2.3.4 Electrochemical Measurements 13 2.4 Conclusions 15 2.5 References 16 Ⅲ. Magnesium Electrolyte Solvation Structure Modification 19 3.1 Introduction 19 3.2 Experimental 21 3.2.1 Material Preparation 21 3.2.2 Electrochemical Measurements 21 3.2.3 Material Characterization 22 3.2.4 Battery Performance 22 3.3 Results and Discussion 23 3.3.1 Selection of Base Electrolyte Solvent 23 3.3.2 Selection of High Donor Number Solvent 24 3.3.3 Optimization of TEP Solvent Content 27 3.3.4 Electrochemical Performance of GTE 10 29 3.3.5 Magnesium Electrolyte Solvation Shell Structure Analysis 31 3.3.6 Electrochemical Analysis 32 3.3.7 Surface Characterization 33 3.3.8 Battery Performance 34 3.4 Conclusions 37 3.5 References 39 Summary (in Korean) 42 |
- |
| dc.format.extent | 42 | - |
| dc.language | eng | - |
| dc.publisher | DGIST | - |
| dc.title | Interface Modification Strategies for Developing Reversible Magnesium Metal Batteries | - |
| dc.title.alternative | 가역적인 마그네슘 금속 배터리 개발을 위한 계면 변화 전략 | - |
| dc.type | Thesis | - |
| dc.identifier.doi | 10.22677/THESIS.200000828499 | - |
| dc.description.degree | Master | - |
| dc.contributor.department | Department of Energy Science and Engineering | - |
| dc.identifier.bibliographicCitation | Yewon Park. (2025). Interface Modification Strategies for Developing Reversible Magnesium Metal Batteries. doi: 10.22677/THESIS.200000828499 | - |
| dc.contributor.coadvisor | Seung-Tae Hong | - |
| dc.date.awarded | 2025-02-01 | - |
| dc.publisher.location | Daegu | - |
| dc.description.database | dCollection | - |
| dc.citation | XT.EM 박64 202502 | - |
| dc.date.accepted | 2025-01-20 | - |
| dc.contributor.alternativeDepartment | 에너지공학과 | - |
| dc.subject.keyword | Magnesium metal batteries, Zn protective interphase, solvation structure optimization, phosphate additive | - |
| dc.contributor.affiliatedAuthor | Yewon Park | - |
| dc.contributor.affiliatedAuthor | Hochun Lee | - |
| dc.contributor.affiliatedAuthor | Seung-Tae Hong | - |
| dc.contributor.alternativeName | 박예원 | - |
| dc.contributor.alternativeName | Hochun Lee | - |
| dc.contributor.alternativeName | 홍승태 | - |