Detail View

A water-efficient artificial phytoextraction technology for the remediation of cesium-contaminated soil inspired by plant transpiration and the hydrologic cycle
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
A water-efficient artificial phytoextraction technology for the remediation of cesium-contaminated soil inspired by plant transpiration and the hydrologic cycle
Alternative Title
식물 증산작용과 수문 순환에서 영감을 받은 방사성 세슘 오염 토양의 정화를 위한 물 효율적인 인공 식물 추출 기술
DGIST Authors
Soobeen KimSeong Kyun KimJinhee Park
Advisor
김성균
Co-Advisor(s)
Jinhee Park
Issued Date
2025
Awarded Date
2025-02-01
Citation
Soobeen Kim. (2025). A water-efficient artificial phytoextraction technology for the remediation of cesium-contaminated soil inspired by plant transpiration and the hydrologic cycle. doi: 10.22677/THESIS.200000828551
Type
Thesis
Description
Photothermal Conversion, Contaminant Adsorption, Purification
Abstract
Cesium ions (Cs+) are hazardous radioactive contaminants that pose significant risks to humans and the environment due to their high solubility in water, leading to increased mobility in groundwater and potential impacts on aquatic ecosystems. While adsorption using Prussian blue (PB) is an effective method for removing Cs+ from water, soil remediation remains challenging due to the limited mobility of contaminants. This study presents a water-efficient artificial phytoextraction system integrated with an interfacial solar vapor generation (ISVG) device for Cs+ purification in contaminated soil. The device’s "leaves" are composed of PB immobilized on cellulose nanofibers (CNF-PB), offering excellent water absorption and transport properties, enabling efficient solar-to-thermal conversion for Cs+ accumulation and water evaporation. Under real sunlight, the system achieved over 99.8% Cs+ removal from soil water in 10 days. It also demonstrated high Cs+ selectivity, leaving essential nutrient ions in the soil. This system provides a sustainable, rapid, and eco-friendly approach to Cs+ contaminated soil remediation.|본 논문은 세슘 이온(Cesium ion, Cs+)은 높은 수용성으로 인해 지하수에서 이동성이 증가하고 수생 생태계에 잠재적인 영향을 미침으로써 인간과 환경에 심각한 위험을 초래하는 유해한 방사성 오염 물질입니다. 물에서 Cs+를 제거하는 데는 프러시안 블루(Prussian blue, PB)를 활용한 흡착법이 효과적이지만, 오염 물질의 이동성이 제한된 토양 정화에는 여전히 어려움이 존재합니다. 본 연구는 Cs+ 정화를 위해 수분 효율적인 인공 식물 추출 시스템을 제시하며, 이는 계면 태양 증발 장치(ISVG)와 통합되어 오염된 토양에서 Cs+를 제거합니다. 이 장치의 "잎" 부분은 셀룰로오스 나노섬유에 프러시안 블루(CNF-PB)가 고정되어 있어, 뛰어난 수분 흡수 및 이동성을 제공하고 태양광을 열로 변환해 Cs+를 축적하고 물을 증발시킵니다. 실제 태양광 아래에서 이 시스템은 10 일 만에 토양 수분으로부터 99.8% 이상의 Cs+를 제거하는 성과를 달성했으며, 필수 영양 이온은 그대로 남기면서 높은 Cs+선택성을 보여주었습니다. 본 시스템은 Cs+로 오염된 토양을 정화하는 데 있어 지속 가능하고 신속하며 친환경적인 해결책을 제공합니다.
Table Of Contents
Ⅰ. Introduction 1
1.1 Introduction 1
Ⅱ. Theoretical background 6
2.1 Theoretical background 6
2.2 Interfacial Solar Vapor Generation (ISVG) 7
2.3 Photothermal material 8
2.4 Adsorption theory 9
2.5 Biomass material (Cellulose Nano Fiber, CNF) 11
Ⅲ. Materials and methods 12
3.1 Materials 12
3.2 Characterization 12
3.3 Preparation of CNF-PB and ISVG device 13
3.3.1 Preparation of PB nanoparticles immobilized on CNF (CNF-PB) 13
3.3.2 Preparation of the CNF-PB deposited leaf and the plant-like ISVG device 15
3.4 Solar evaporation experiments of the ISVG device 15
3.5 Cs+ adsorption 16
3.5.1 Analytical methods 16
3.5.2 Adsorption isotherms and kinetics 16
3.5.3 Batch cesium ion adsorption tests 17
3.5.4 Lab-scale artificial phytoextraction experiments 18
3.5.5 Scale-up application experiment 19
Ⅳ. Results and Discussions 20
4.1 Strategies to fabricate a plant-like ISVG device for soil remediation from radionuclide
contamination and to design a water-efficient artificial phytoextraction system 20
4.2 Preparation and characterization of PB decorated CNF (CNF-PB) and the interfacial
solar vapor generating device (ISVG device) 23
4.3 Simulated solar vapor generation experiments 27
4.4 Batch cesium ion absorption experiments 29
4.5 Lab-scale water-efficient artificial phytoextraction 33
4.6 Verification of the retention of other nutrient ions in soil after the remediation process 37
4.7 Scale-up artificial phytoextraction experiment 40
Ⅴ. Conclusion 41
5. Conclusion 41
Ⅵ. References 43
URI
http://hdl.handle.net/20.500.11750/58060
http://dgist.dcollection.net/common/orgView/200000828551
DOI
10.22677/THESIS.200000828551
Degree
Master
Department
Department of Physics and Chemistry
Publisher
DGIST
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads