Detail View

Efficient Multimodal Model Training Techniques Using Storage Servers
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 이성진 -
dc.contributor.author Daehan Lee -
dc.date.accessioned 2025-03-04T10:26:59Z -
dc.date.available 2025-03-04T10:26:59Z -
dc.date.issued 2025 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/58102 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000828354 -
dc.description AI 시스템, 데이터 주변 처리, 멀티모달 모델, 모델 프리징, AI 최적화 -
dc.description.tableofcontents Ⅰ. Introduction 1
Ⅱ. Background 3
Ⅲ. Motivation 7
Ⅳ. Designs 11
Ⅴ. Experiments 16
Ⅵ. Conclusions 25
-
dc.format.extent 29 -
dc.language eng -
dc.publisher DGIST -
dc.title Efficient Multimodal Model Training Techniques Using Storage Servers -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.200000828354 -
dc.description.degree Master -
dc.contributor.department Artificial Intelligence Major -
dc.identifier.bibliographicCitation Daehan Lee. (2025). Efficient Multimodal Model Training Techniques Using Storage Servers. doi: 10.22677/THESIS.200000828354 -
dc.contributor.coadvisor Hoonsung Chwa -
dc.date.awarded 2025-02-01 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.AM 이23 202502 -
dc.date.accepted 2025-01-20 -
dc.contributor.alternativeDepartment 학제학과인공지능전공 -
dc.subject.keyword AI 시스템, 데이터 주변 처리, 멀티모달 모델, 모델 프리징, AI 최적화 -
dc.contributor.affiliatedAuthor Daehan Lee -
dc.contributor.affiliatedAuthor Sungjin Lee -
dc.contributor.affiliatedAuthor Hoonsung Chwa -
dc.contributor.alternativeName 이대한 -
dc.contributor.alternativeName Sungjin Lee -
dc.contributor.alternativeName 좌훈승 -
dc.rights.embargoReleaseDate 2030-02-28 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads