Detail View

Toward extended durability and power output of high temperature proton exchange membrane fuel cells with Gd2Zr2O7-C3N4 composite membrane
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Toward extended durability and power output of high temperature proton exchange membrane fuel cells with Gd2Zr2O7-C3N4 composite membrane
Issued Date
ACCEPT
Citation
Vinothkannan, Mohanraj. Toward extended durability and power output of high temperature proton exchange membrane fuel cells with Gd2Zr2O7-C3N4 composite membrane. Ionics. doi: 10.1007/s11581-025-06120-8
Type
Article
Author Keywords
Sulfonated poly(ether ether ketone)GdZr-CNHT-PEMFCChemical durabilityOperational stability
Keywords
POLYMER ELECTROLYTE MEMBRANESOXIDE NANOCOMPOSITE MEMBRANELOW HUMIDITYCHEMICAL DURABILITYCARBON NANOTUBESHYBRID MEMBRANESPEEK MEMBRANENAFIONCONDUCTIVITYOPERATION
ISSN
0947-7047
Abstract
State-of-the-art proton exchange membrane fuel cell (PEMFC) that operate at 80 °C and 100% relative humidity (RH) requires an external humidifier, noble electrocatalyst, and expensive Nafion membrane to obtain appreciable power output and durability. High temperature (HT) operation over 100 °C provides an ideal solution to avoid costly components in PEMFC application. However, HT-PEMFC frequently loses its performance excessively because of phosphoric acid leaching from the conventional polybenzimidazole-based membranes. Herein, we present a gadolinium zirconium oxide (Gd2Zr2O7)-carbon nitride (C3N4) (GdZr-CN) additive that reasonably improves the power output, chemical durability, and operational stability of sulfonated poly(ether ether ketone) (SPEEK) membrane in HT-PEMFC. When use SPEEK/GdZr-CN composite membrane in HT-PEMFC, the metal cations (Zr4+ and Gd3+) decompose the free radicals, while the acid–base interactions between functional groups (-SO3H, -NH, -NH2, and -OH) involve the anhydrous proton conduction. Using SPEEK/GdZr-CN composite membrane, we obtain a HT-PEMFC exhibiting a maximal power output of 315 mW cm−2 at 110 °C under 15% RH, with minimal chemical degradation after 300 h of operation. Although the incorporation of GdZr-CN significantly enhances the durability of the composite membrane by scavenging free radicals and increasing glass transition temperature, the minimal degradation observed is primarily attributed to the inherent vulnerability of ether linkages in SPEEK backbones to free radical attacks and hygrothermal stress during prolonged operation. This study unveils that SPEEK/GdZr-CN composite membrane is a cost-competitive, energy-efficient, and durable PEM from the perspective of HT-PEMFC. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
URI
http://hdl.handle.net/20.500.11750/58123
DOI
10.1007/s11581-025-06120-8
Publisher
Springer
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

상가라쥬샨무감
Shanmugam, Sangaraju상가라쥬샨무감

Department of Energy Science and Engineering

read more

Total Views & Downloads