Detail View

Troubleshooting Carbon Nanotube Bundling Using Electrostatic Energy-Driven Dispersion for LiFePO4 Bimodal Thick Electrode in Lithium-Ion Batteries
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Ilgyu -
dc.contributor.author Choi, Jae Hong -
dc.contributor.author Jang, Hangeol -
dc.contributor.author Kim, Na Yeong -
dc.contributor.author Park, Jeong-Ho -
dc.contributor.author Lee, Ho-Jin -
dc.contributor.author Cheon, Se-Hwa -
dc.contributor.author Oh, Eun-Suok -
dc.contributor.author Yoon, Ki Ro -
dc.contributor.author Kim, Jinsoo -
dc.contributor.author Yoo, Jung-Keun -
dc.contributor.author Han, Yu-Jin -
dc.contributor.author Oh, Pilgun -
dc.contributor.author Jung, Ji-Won -
dc.date.accessioned 2025-04-28T19:40:13Z -
dc.date.available 2025-04-28T19:40:13Z -
dc.date.created 2025-04-24 -
dc.date.issued 2025-04 -
dc.identifier.issn 1936-0851 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/58327 -
dc.description.abstract Interest in using thick LiFePO4 cathodes to enhance lithium-ion battery energy density has recently been growing. To obtain thick cathodes with superior electrical conductivity throughout their depth, it is crucial to substitute conventional zero-dimensional conductive agents with one-dimensional carbon nanotubes (CNTs). Nevertheless, the inherent properties of CNT, including their high aspect ratio and strong van der Waals interaction, hinder uniform dispersion, causing poor performance in thick electrodes. In this work, we adopted an electrostatic energy-driven dispersion (EED) method to achieve a homogeneous distribution of multiwalled carbon nanotubes (MWCNTs) with LiFePO4 for thick cathodes. The EED process, guided by the charge residue model and ion evaporation model theories, facilitated the formation of a well-distributed LiFePO4-MWCNT composite. This method yielded e-LiFePO4/MWCNT composites with consistent morphology even at a high MWCNT concentration (5 wt %), as verified by cross-sectional scanning electron microscopy and a microcomputed tomography scan. The e-LiFePO4/MWCNT cathode exhibited reduced overpotential during the Li-ion redox process, along with enhanced areal capacity and capacity retention (7.27 mAh cm-2 at 0.3 C and 80.74% after 90 cycles), outperforming the conventional mixing-only method. These results underline the importance of prioritizing the uniform distribution of active materials and conductive agents in future thick electrode research. © 2025 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Troubleshooting Carbon Nanotube Bundling Using Electrostatic Energy-Driven Dispersion for LiFePO4 Bimodal Thick Electrode in Lithium-Ion Batteries -
dc.type Article -
dc.identifier.doi 10.1021/acsnano.5c01892 -
dc.identifier.wosid 001471380500001 -
dc.identifier.scopusid 2-s2.0-105003771309 -
dc.identifier.bibliographicCitation Kim, Ilgyu. (2025-04). Troubleshooting Carbon Nanotube Bundling Using Electrostatic Energy-Driven Dispersion for LiFePO4 Bimodal Thick Electrode in Lithium-Ion Batteries. ACS Nano, 19(16), 15941–15952. doi: 10.1021/acsnano.5c01892 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor thick electrodes -
dc.subject.keywordAuthor carbon nanotubes -
dc.subject.keywordAuthor electrostatic dispersion -
dc.subject.keywordAuthor LiFePO4 -
dc.subject.keywordAuthor Li-ion batteries -
dc.citation.endPage 15952 -
dc.citation.number 16 -
dc.citation.startPage 15941 -
dc.citation.title ACS Nano -
dc.citation.volume 19 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김진수
Kim, Jinsoo김진수

Department of Energy Science and Engineering

read more

Total Views & Downloads