Detail View

Dual Electrolyte Additives Suppress Hydrogen Evolution in Aqueous Li-Ion Batteries
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kang, Junsik -
dc.contributor.author Lee, Sukhyung -
dc.contributor.author Lee, Hochun -
dc.date.accessioned 2025-06-11T22:19:35Z -
dc.date.available 2025-06-11T22:19:35Z -
dc.date.created 2025-05-23 -
dc.date.issued 2025-06 -
dc.identifier.issn 2380-8195 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/58371 -
dc.description.abstract Aqueous Li-ion batteries suffer from parasitic hydrogen evolution due to limited cathodic stability. We introduce in this work a dual-additive strategy combining a persulfate and a fluorinated acrylate in a 21 mol kg-1 LiTFSI aqueous electrolyte. The additives promote the formation of a bilayer solid electrolyte interphase (SEI) comprising an inorganic LiF-rich inner layer and a hydrophobic organic-rich outer layer, which effectively suppresses hydrogen evolution and inhibits SEI dissolution. With this formulation, a LiMn2O4/Li4Ti5O12 cell is shown to retain over 80% of its initial capacity after 300 cycles, outperforming both the baseline and single-additive controls. The persulfate-acrylate pair likewise improves the cycling stability in other aqueous electrolytes. We also extended the concept to alternative initiator-monomer combinations, demonstrating its versatility in interfacial engineering. By enabling robust SEI formation, this strategy addresses a key limitation of aqueous Li-ion batteries and supports their practical deployment. © 2025 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Dual Electrolyte Additives Suppress Hydrogen Evolution in Aqueous Li-Ion Batteries -
dc.type Article -
dc.identifier.doi 10.1021/acsenergylett.5c00800 -
dc.identifier.wosid 001481554100001 -
dc.identifier.scopusid 2-s2.0-105004394952 -
dc.identifier.bibliographicCitation ACS Energy Letters, v.10, no.6, pp.2593 - 2599 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus GREEN -
dc.subject.keywordPlus RADICAL POLYMERIZATION -
dc.subject.keywordPlus MECHANISM -
dc.citation.endPage 2599 -
dc.citation.number 6 -
dc.citation.startPage 2593 -
dc.citation.title ACS Energy Letters -
dc.citation.volume 10 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이호춘
Lee, Hochun이호춘

Department of Energy Science and Engineering

read more

Total Views & Downloads