Detail View

Pushing the envelope of physical vapor deposited thin-film based solid oxide fuel cells for 500 °C operation: Securing 1 W cm−2 performance, 1000 h stability, scale up to 15 W power, and associated limitations
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Park, Jung Hoon -
dc.contributor.author Oh, Seongkook -
dc.contributor.author Yang, Byung Chan -
dc.contributor.author Kim, Dong Hwan -
dc.contributor.author Thieu, Cam-Anh -
dc.contributor.author Hong, Jeeho -
dc.contributor.author Park, Jeong Hwa -
dc.contributor.author Lee, Jong-Ho -
dc.contributor.author Yoon, Kyung Joong -
dc.contributor.author Ji, Ho-Il -
dc.contributor.author Lee, Kang Taek -
dc.contributor.author Yang, Sungeun -
dc.contributor.author Son, Ji-Won -
dc.date.accessioned 2025-06-11T22:19:44Z -
dc.date.available 2025-06-11T22:19:44Z -
dc.date.created 2025-05-29 -
dc.date.issued 2025-07 -
dc.identifier.issn 1385-8947 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/58380 -
dc.description.abstract Thin-film solid oxide fuel cells (TF-SOFCs) open up new possibilities for SOFCs beyond their current reach by lowering the operating temperature. Here, we highlight key strategies to push the envelope of TF-SOFCs—scalability, performance, and stability—through the development of all cell components. Our innovations include using a conventional ceramic NiO-YSZ anode support modified with a physical vapor deposited anode functional layer, enabling reliable and scalable gas-impermeable thin-film electrolytes. To achieve a state-of-the-art performance of 1 W cm−2 at 500 °C, we optimized each cell component: reducing anode particle size and introducing a mixed ionic and electronic conductor; enhancing cathode performance via deposition optimization of La0.6Sr0.4CoO3; and decreasing electrolyte ohmic resistance with a tri-layer GDC-YSZ-GDC structure using minimal thickness of YSZ. Long-term stability tests, >500 h, revealed that Ni protrusion through the electrolyte is the key degradation mechanism in TF-SOFCs. By lowering the Ni content in the anode, we achieved 1000 h durability with a degradation rate of 2.9 % kh−1. Furthermore, we scaled up the cell to 5 × 5 cm2 without compromising performance and achieved >15 W total power per cell at 500 °C, demonstrating practical applicability of TF-SOFCs. These strategies advance TF-SOFC technology and provide key insights into developing low-temperature SOFCs with improved scalability, performance, and stability. © 2025 The Authors -
dc.language English -
dc.publisher Elsevier -
dc.title Pushing the envelope of physical vapor deposited thin-film based solid oxide fuel cells for 500 °C operation: Securing 1 W cm−2 performance, 1000 h stability, scale up to 15 W power, and associated limitations -
dc.type Article -
dc.identifier.doi 10.1016/j.cej.2025.163441 -
dc.identifier.wosid 001494558600023 -
dc.identifier.scopusid 2-s2.0-105005002602 -
dc.identifier.bibliographicCitation Park, Jung Hoon. (2025-07). Pushing the envelope of physical vapor deposited thin-film based solid oxide fuel cells for 500 °C operation: Securing 1 W cm−2 performance, 1000 h stability, scale up to 15 W power, and associated limitations. Chemical Engineering Journal, 515. doi: 10.1016/j.cej.2025.163441 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor Low-temperature solid oxide fuel cells -
dc.subject.keywordAuthor Nano-structures -
dc.subject.keywordAuthor Solid oxide fuel cells -
dc.subject.keywordAuthor Physical vapor deposition -
dc.subject.keywordAuthor Thin-film solid oxide fuel cells -
dc.subject.keywordPlus DENSITY -
dc.subject.keywordPlus OXYGEN REDUCTION -
dc.subject.keywordPlus NANO-COMPOSITE -
dc.subject.keywordPlus TEMPERATURE -
dc.subject.keywordPlus ELECTRODE -
dc.subject.keywordPlus CATHODE -
dc.subject.keywordPlus SOFC -
dc.subject.keywordPlus LAYER -
dc.subject.keywordPlus OPTIMIZATION -
dc.subject.keywordPlus PEROVSKITE -
dc.citation.title Chemical Engineering Journal -
dc.citation.volume 515 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering -
dc.relation.journalWebOfScienceCategory Engineering, Environmental; Engineering, Chemical -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads