Detail View

Spatiotemporal antibacterial strategy via intra-particle charge transfer-enhanced self-photooxidation of Cu2O nanoparticles
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Ahn, Yongdeok -
dc.contributor.author Park, Minsoo -
dc.contributor.author Jang, Juhee -
dc.contributor.author Park, Jiseong -
dc.contributor.author Cho, Juhyeong -
dc.contributor.author Lee, Wonhee John -
dc.contributor.author Pyo, Hyeon-Bong -
dc.contributor.author Seo, Daeha -
dc.date.accessioned 2025-07-17T18:10:10Z -
dc.date.available 2025-07-17T18:10:10Z -
dc.date.created 2025-07-11 -
dc.date.issued 2025-09 -
dc.identifier.issn 1385-8947 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/58664 -
dc.description.abstract Due to its photocatalytic instability, Cu₂O can function as a potent source of Cu2+ ions. Upon exposure to light irradiation, Cu₂O nanoparticles (NPs) undergo self-photooxidation, wherein facet-dependent charge separation facilitates the leaching of Cu2+ ions. This process generates a microenvironment with a high ion concentration, thereby ensuring effective bacterial eradication. Cu-based antimicrobial agents eliminate bacteria by releasing Cu2+ ions and generating reactive oxygen species (ROS). However, their limited ion release and diffusion constraints impede bactericidal efficiency. This study introduces a self-photooxidation strategy that employs Cu₂O NPs for the spatiotemporal eradication of bacteria. Under light exposure, Cu₂O NPs undergo photodecomposition, rapidly releasing Cu2+ ions at a rate that surpasses bacterial motility. Additionally, the exothermic reaction induces thermal convection, directing motile Escherichia coli toward the NP surfaces, thereby enhancing antibacterial efficacy. The processes of self-photooxidation, bacterial motility, and cell viability were quantified at the level of individual particles and cells using optical microscopy. These findings demonstrate that the facet-dependent electronic properties of shape-controlled Cu₂O NPs optimize charge transfer, thereby enhancing self-photooxidation and antibacterial performance. This strategy addresses the limitations of conventional Cu-based antimicrobials and enables precise optical control of bactericidal activity. © 2025 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier -
dc.title Spatiotemporal antibacterial strategy via intra-particle charge transfer-enhanced self-photooxidation of Cu2O nanoparticles -
dc.type Article -
dc.identifier.doi 10.1016/j.cej.2025.165461 -
dc.identifier.wosid 001538509300001 -
dc.identifier.scopusid 2-s2.0-105010159935 -
dc.identifier.bibliographicCitation Chemical Engineering Journal, v.520 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Cu2O -
dc.subject.keywordAuthor Charge transfer -
dc.subject.keywordAuthor Photo-activation -
dc.subject.keywordAuthor Spatiotemporal control -
dc.subject.keywordAuthor Antibacterial -
dc.subject.keywordPlus ESCHERICHIA-COLI -
dc.subject.keywordPlus COPPER -
dc.subject.keywordPlus TRANSFORMATION -
dc.subject.keywordPlus PHOTOCATALYST -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus SURFACES -
dc.subject.keywordPlus GROWTH -
dc.subject.keywordPlus ROS -
dc.citation.title Chemical Engineering Journal -
dc.citation.volume 520 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering -
dc.relation.journalWebOfScienceCategory Engineering, Environmental; Engineering, Chemical -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads