Detail View

High Oxygen Ion Conductivity in Hexagonal Perovskite Ba7Nb4MoO20 via Epitaxy-Assisted Orienting of Two-Dimensional Diffusion Pathways
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Yunyeong -
dc.contributor.author Kim, Dongha -
dc.contributor.author Park, Jiseok -
dc.contributor.author Chen, Aiping -
dc.contributor.author MacManus-Driscoll, Judith L. -
dc.contributor.author Lee, Shinbuhm -
dc.date.accessioned 2026-01-13T21:10:18Z -
dc.date.available 2026-01-13T21:10:18Z -
dc.date.created 2025-10-31 -
dc.date.issued 2025-09 -
dc.identifier.issn 1936-0851 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59348 -
dc.description.abstract Oxygen ion conductors are a key component in solid-state ionic devices such as fuel cells, catalysts, sensors, and artificial intelligent devices. The recent discovery of undoped Ba7Nb4MoO20 hexagonal perovskites has attracted great attention due to the existence of two-dimensional oxygen diffusion pathways between NbO4 and MoO4 tetrahedra. However, there have been rare studies on the control parameters for hexagonal perovskites to further boost oxygen ion transport at lower temperatures. Here, we find significantly higher oxygen ion conductivity (5.6 x 10(-4) S cm(-1) at 340 degrees C, 3.2 x 10(-1) S cm(-1) at 600 degrees C) of (001)-oriented Ba7Nb4MoO20 epitaxial films by several orders of magnitude than that of sintered pellets. Our report is comparable to the oxygen ion conductivities of conventional doped conductors. X-ray diffraction and atomic-scale characterization with energy-dispersive X-ray spectroscopy reveal that this epitaxy-driven enhancement is attributed to the good alignment of two-dimensional pathways in an ion current direction. Our design principle of hexagonal perovskites will trigger an advanced understanding of the correlation between the crystal structure and ultrahigh oxygen ion conductivity -
dc.language English -
dc.publisher American Chemical Society -
dc.title High Oxygen Ion Conductivity in Hexagonal Perovskite Ba7Nb4MoO20 via Epitaxy-Assisted Orienting of Two-Dimensional Diffusion Pathways -
dc.type Article -
dc.identifier.doi 10.1021/acsnano.5c09279 -
dc.identifier.wosid 001574976400001 -
dc.identifier.scopusid 2-s2.0-105017374403 -
dc.identifier.bibliographicCitation ACS Nano, v.19, no.38, pp.33904 - 33912 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor oxygen ion conductor -
dc.subject.keywordAuthor hexagonal perovskite -
dc.subject.keywordAuthor Ba7Nb4MoO20 -
dc.subject.keywordAuthor two-dimensional oxygen disorder -
dc.subject.keywordAuthor epitaxial film -
dc.subject.keywordPlus TEMPERATURE -
dc.subject.keywordPlus MEMRISTOR -
dc.subject.keywordPlus ENHANCEMENT -
dc.subject.keywordPlus FILMS -
dc.citation.endPage 33912 -
dc.citation.number 38 -
dc.citation.startPage 33904 -
dc.citation.title ACS Nano -
dc.citation.volume 19 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이신범
Lee, Shinbuhm이신범

Department of Physics and Chemistry

read more

Total Views & Downloads