Detail View

Divalent anion-driven framework regulation in Zr-based halide solid electrolytes for all-solid-state batteries
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Jae-Seung -
dc.contributor.author Han, Daseul -
dc.contributor.author Choe, Jinyeong -
dc.contributor.author Kim, Youngkyung -
dc.contributor.author Kim, Hae-Yong -
dc.contributor.author Lee, Soeul -
dc.contributor.author Seo, Jiwon -
dc.contributor.author Ham, Seung-Hui -
dc.contributor.author Song, You-Yeob -
dc.contributor.author Lee, Chang-Dae -
dc.contributor.author Lee, Juho -
dc.contributor.author Kwak, Hiram -
dc.contributor.author Kim, Jinsoo -
dc.contributor.author Jung, Yoon-Seok -
dc.contributor.author Jung, Sung-Kyun -
dc.contributor.author Nam, Kyung-Wan -
dc.contributor.author Seo, Dong-Hwa -
dc.date.accessioned 2026-01-13T22:10:12Z -
dc.date.available 2026-01-13T22:10:12Z -
dc.date.created 2025-12-11 -
dc.date.issued 2025-11 -
dc.identifier.issn 2041-1723 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59356 -
dc.description.abstract Research into solid electrolytes for all-solid-state batteries has intensified due to demand for safer and higher-energy-density batteries. Halide solid electrolytes are valued for their high ionic conductivity, oxidative stability, and ductility. Among them, Li2ZrCl6 is cost-effective but has a relatively lower Li⁺ ionic conductivity (0.4 mS cm−1 at 25 °C) compared to other halides, such as Li3InCl6 (> 1 mS cm−1 at 25 °C). Here, we elucidate a fundamental mechanism of divalent-anion-driven framework modification that enables enhanced ionic conduction in Zr-based halides. Specifically, we demonstrate enhanced Li+ conductivities for oxygen- (0.8Li2O–ZrCl4: 1.78 mS cm−1 at 25 °C) and sulfur- (0.8Li2S–ZrCl4: 1.01 mS cm−1 at 25 °C) substituted lattices. Synchrotron-based X-ray analyses identify distinct anionic sublattices and first-principles calculations reveal that divalent anions locally cluster within the lattice, inducing structural distortion and Li-site destabilization. These changes widen lithium conduction channels and alter the bonding environment, weakening and diversifying Li–Cl interactions. As a result, the energy landscape for lithium migration is flattened, leading to improved ionic conduction. These findings highlight design strategies for divalent-anion-driven framework regulation in halide solid electrolytes. -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Divalent anion-driven framework regulation in Zr-based halide solid electrolytes for all-solid-state batteries -
dc.type Article -
dc.identifier.doi 10.1038/s41467-025-65702-2 -
dc.identifier.wosid 001627619300001 -
dc.identifier.scopusid 2-s2.0-105023325867 -
dc.identifier.bibliographicCitation Nature Communications, v.16, no.1 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus CONDUCTORS -
dc.subject.keywordPlus INTERFACE -
dc.subject.keywordPlus CATHODES -
dc.subject.keywordPlus SULFIDE -
dc.citation.number 1 -
dc.citation.title Nature Communications -
dc.citation.volume 16 -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.type.docType Article -
Show Simple Item Record

File Downloads

공유

qrcode
공유하기

Related Researcher

김진수
Kim, Jinsoo김진수

Department of Energy Science and Engineering

read more

Total Views & Downloads