Detail View

Interface-driven performance boost in NbOx/V2O5 bilayer memristors for next-generation neuromorphic systems

Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Ahmad, Muneeb -
dc.contributor.author Kim, Honggyun -
dc.contributor.author Ahmad, Ibtisam -
dc.contributor.author Ghazanfar, Hammad -
dc.contributor.author Ghafoor, Faisal -
dc.contributor.author Aziz, Jamal -
dc.contributor.author Rabeel, Muhammad -
dc.contributor.author Khan, Muhammad Farooq -
dc.contributor.author Lee, Myoung-Jae -
dc.contributor.author Dastgeer, Ghulam -
dc.contributor.author Kim, Deok-kee -
dc.date.accessioned 2026-01-21T14:40:11Z -
dc.date.available 2026-01-21T14:40:11Z -
dc.date.created 2025-11-13 -
dc.date.issued 2025-12 -
dc.identifier.issn 2588-8420 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59377 -
dc.description.abstract The advancement of bilayer memristor devices is crucial for enhancing performance and enabling multifunctionality in next-generation memory technologies for neuromorphic applications. Here, we present an optimized fabrication and characterization of Resistive Random-Access Memory (RRAM) devices composed of a NbOx/V2O5 bilayer structure. By systematically varying the thickness of the V2O5 layer while maintaining a constant NbOx thickness of less than 14 nm, we achieved a significant enhancement in device performance. Our optimized bilayer device with a 60 nm thick V2O5 layer exhibited an on/off current ratio of 106, achieving a four-order-of-magnitude improvement over single-layer NbOx devices while maintaining the same set voltage. Additionally, this bilayer structure demonstrated endurance over 103 DC cycles and retention exceeding 104 s. Comprehensive material analysis using HRTEM, EDX, and XPS with depth profile confirmed the precise composition and structural integrity of the devices. Furthermore, neuromorphic pulse measurements revealed synaptic-like behavior, underscoring the potential of the NbOx/V2O5 bilayer structure for integration into neuromorphic computing systems. This behavior was further applied for MNIST dataset based digit recognition to obtain an average recognition accuracy of 97.69 %. These findings not only advance the state-of-the-art in RRAM technology but also open new avenues for its application in next-generation computing architectures. -
dc.language English -
dc.publisher Elsevier -
dc.title Interface-driven performance boost in NbOx/V2O5 bilayer memristors for next-generation neuromorphic systems -
dc.type Article -
dc.identifier.doi 10.1016/j.mtnano.2025.100706 -
dc.identifier.wosid 001606601800001 -
dc.identifier.scopusid 2-s2.0-105020886111 -
dc.identifier.bibliographicCitation Materials Today Nano, v.32 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor RRAM -
dc.subject.keywordAuthor Niobium oxide (NbOx) -
dc.subject.keywordAuthor Vanadium pentoxide (V2O5) -
dc.subject.keywordAuthor Synaptic behavior -
dc.subject.keywordAuthor Neuromorphic computing -
dc.subject.keywordAuthor Bilayer memristor -
dc.subject.keywordAuthor Interface engineering -
dc.subject.keywordPlus RESISTIVE SWITCHING MEMORY -
dc.subject.keywordPlus DEVICES -
dc.citation.title Materials Today Nano -
dc.citation.volume 32 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이명재
Lee, Myoung-Jae이명재

Division of Nanotechnology

read more

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: