WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Guezzi, Nizar | - |
| dc.contributor.author | Noman, Muhammad | - |
| dc.contributor.author | Lee, Sangheon | - |
| dc.contributor.author | Nam, Sangwoo | - |
| dc.contributor.author | Seo, Youngho | - |
| dc.contributor.author | Yu, Jaesok | - |
| dc.date.accessioned | 2026-01-21T19:10:12Z | - |
| dc.date.available | 2026-01-21T19:10:12Z | - |
| dc.date.created | 2026-01-21 | - |
| dc.date.issued | 2025-09-18 | - |
| dc.identifier.isbn | 9798331523329 | - |
| dc.identifier.issn | 1948-5727 | - |
| dc.identifier.uri | https://scholar.dgist.ac.kr/handle/20.500.11750/59391 | - |
| dc.description.abstract | Clutter filtering is a crucial step in ultrasound flow imaging for eliminating low-frequency signals arising from stationary or slowly moving tissue. Traditional clutter suppression techniques such as high-pass temporal filtering and singular value decomposition (SVD) rely on long temporal ensembles, making them unsuitable for real-time or single-frame processing. In this work, we introduce a deep learning-based method that enables clutter suppression from a single ultrasound frame—no angular compounding or ensembles required. We design an Attention U-Net architecture that incorporates spatial attention mechanisms to focus on flow-related features while attenuating clutter. Our model demonstrates strong clutter suppression and high structural similarity with ground truth filtered outputs. This work opens the door for real-time, single-frame blood flow imaging using deep learning. | - |
| dc.language | English | - |
| dc.publisher | IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society | - |
| dc.relation.ispartof | 2025 IEEE International Ultrasonics Symposium (IUS) | - |
| dc.title | Deep Learning-Based Clutter Suppression for Single-Shot Ultrasound Flow Imaging | - |
| dc.type | Conference Paper | - |
| dc.identifier.doi | 10.1109/IUS62464.2025.11201282 | - |
| dc.identifier.scopusid | 2-s2.0-105021825004 | - |
| dc.identifier.bibliographicCitation | IEEE International Ultrasonics Symposium, IUS 2025, pp.1 - 4 | - |
| dc.identifier.url | https://confcats-event-sessions.s3.us-east-1.amazonaws.com/ius25/uploads/IUS_2025_Program_v21.pdf | - |
| dc.citation.conferenceDate | 2025-09-15 | - |
| dc.citation.conferencePlace | NE | - |
| dc.citation.conferencePlace | Utrecht | - |
| dc.citation.endPage | 4 | - |
| dc.citation.startPage | 1 | - |
| dc.citation.title | IEEE International Ultrasonics Symposium, IUS 2025 | - |