Detail View
Cereblon (CRBN) in the paraventricular nucleus of the hypothalamus regulates energy intake through modulation of SIM1/ARNT2 stability
Citations
WEB OF SCIENCE
Citations
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | 이재민 | - |
| dc.contributor.author | Soojeong Kim | - |
| dc.date.accessioned | 2026-01-23T10:53:54Z | - |
| dc.date.available | 2026-01-23T10:53:54Z | - |
| dc.date.issued | 2026 | - |
| dc.identifier.uri | https://scholar.dgist.ac.kr/handle/20.500.11750/59598 | - |
| dc.identifier.uri | http://dgist.dcollection.net/common/orgView/200000942220 | - |
| dc.description | Cereblon, Paraventricular nucleus of the hypothalamus, Single-minded 1, Aryl hydrocarbon receptor nuclear translocator 2, feeding regulation | - |
| dc.description.abstract | Cereblon (CRBN) is a substrate-binding component of the CUL4A-RING E3 ubiquitin ligase complex. In a previous study, Crbn knockout (KO) mice have been reported to exhibit resistance to diet-induced obesity (DIO); however, the molecular mechanisms by which CRBN regulates systemic energy balance and body weight remain unclear. Here, I demonstrate that CRBN contributes to body weight regulation through central control of energy intake. Under high-fat diet (HFD) conditions, Crbn KO mice exhibited a lean phenotype primarily driven by reduced food intake rather than changes in energy expenditure. Pharmacological inhibition of CRBN by thalidomide, which disrupts canonical substrate binding to the CRBN E3 ligase complex, recapitulated the reductions in food intake and body weight observed in Crbn KO mice in a CRBN-dependent manner. Consistently, neural Crbn deletion (NKO) also decreased food intake and body weight without significant alterations in energy expenditure. CRBN expression across hypothalamic nuclei revealed strong enrichment in the paraventricular nucleus (PVN), a key region for appetite regulation. In line with this enrichment, AAV-mediated CRBN overexpression in PVN neurons induced hyperphagic obesity under HFD feeding. In contrast, PVN-specific Crbn deletion using Single-minded 1 (Sim1)-Cre (SKO), which targets PVN neurons, reproduced the reduced food intake and DIO- resistant phenotypes observed in whole-body and neural KO mice. This PVN-specific Crbn deletion also enhanced the anorectic response to a melanocortin receptor agonist. Given that thalidomide recapitulated Crbn KO phenotypes by disrupting CRBN’s canonical substrate binding, these findings raised the possibility that altered stability of CRBN substrates in PVN neurons contributes to the DIO-resistant phenotype observed across Crbn KO, NKO, and SKO mice. SIM1 and its obligate dimerization partner, Aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), were prioritized as candidate CRBN substrates because PVN-specific Crbn deletion using Sim1-Cre reproduced the DIO-resistant phenotype, CRBN showed the strongest colocalization with SIM1 in the PVN, and ARNT2 ubiquitination was reported to be modulated by the CRBN-targeting thalidomide derivative lenalidomide. As the SIM1/ARNT2 transcription factor complex is a critical regulator of PVN-mediated feeding and its disruption causes severe hyperphagic obesity, it represents a plausible target through which CRBN could exert its effects. In vitro analyses revealed that CRBN physically interacts with SIM1 and ARNT2, promoting their ubiquitination and reducing their protein abundance. Moreover, CRBN overexpression reduced their dimerization, nuclear localization, and DNA-binding activity, whereas thalidomide treatment restored all these CRBN-induced changes. Functionally extending these observations, pharmacological inhibition of CRBN by thalidomide administration in Sim1 Het mice alleviated the hyperphagic obesity driven by reduced SIM1 gene dosage. Supporting this mechanistic link, comparative transcriptomic analysis of Crbn KO and Sim1 Het mice revealed opposing gene expression patterns in PVN neurons, demonstrating that CRBN and SIM1 act within shared regulatory pathways but drive transcriptional programs in antagonistic directions, consistent with their contrasting metabolic phenotypes. Collectively, these findings indicate that CRBN contributes to the regulation of energy intake and body weight through post-translational modulation of the SIM1/ARNT2 transcriptional complex in PVN neurons. The present study uncovers a previously unrecognized molecular connection between CRBN and hypothalamic feeding circuits, offering mechanistic insight into energy balance and highlighting the physiological significance of CRBN beyond its known roles in pharmacology and cellular functions. These insights suggest that modulating the CRBN-SIM1/ARNT2 axis may provide new opportunities for addressing hyperphagic obesity.|Cereblon (CRBN)은 CUL4A-RING E3 유비퀴틴화 효소의 기질 수용체이다. 선행 연구들을 통해 CRBN이 다양한 생리적 과정에 관여하는 것으로 알려져 있으며, 특히 CRBN 결손 마우스는 고지방식이에 의해 유도되는 비만에 저항성을 보이지만, CRBN이 전신 에너지 항상성 조절에 관여하는 분자적 기전은 명확히 밝혀지지 않았다. 본 연구에서는 CRBN이 중추신경계 에너지 섭취 조절을 통해 체중 조절에 관여함을 규명하였다. 이전 연구에서 관찰된 바와 같이, 고지방 식이 조건에서 CRBN 결손 마우스는 비만 저항성 표현형을 보였으며, 식이 섭취는 감소한 반면 에너지 소모는 오히려 감소하여 CRBN 결손에서 나타나는 체중 감소가 에너지 소모의 변화보다는 주로 감소된 에너지 섭취에 기인함을 확인하였다. CRBN과 기질 단백질이 결합을 저해하는 약물인 탈리도마이드의 투여 역시 체중 및 식이 섭취를 감소시켜 CRBN 결손과 유사한 대사 효과를 유도하였으며, 이러한 효과는 CRBN 의존적이었다. CRBN 전신 결손 마우스와 지방세포 특이적 결손 마우스 모두에서 지방조직 열 발산 관련 유전자 발현에 변화가 관찰되지 않았으며, Nestin-Cre를 이용한 신경세포 특이적 CRBN 결손 마우스 또한 에너지 소모의 변화 없이 식이 섭취와 체중 감소를 보여, CRBN이 중추신경계의 섭식 조절을 통해 체중 조절에 관여함을 거듭 시사하였다. CRBN은 식욕 조절의 중추인 뇌 시상하부 중에서도 식욕 조절을 중심적으로 담당하는 시상하부실방핵에서 발현이 높게 나타났다. Sim1-Cre 마우스를 이용한 실방핵 CRBN결손 마우스에서도 전신 및 신경세포 특이적 결손 마우스와 같이 식이 섭취 감소와 비만 저항성 표현형이 관찰되었으며, 멜라노코르틴 수용체 작용제에 대한 식욕 억제 반응성이 더욱 높게 나타났다. 반면, 아데노 부속 바이러스를 이용해 실방핵에서 CRBN을 과발현 시킨 마우스에서는 고지방식이 섭취 후 과식증과 이에 따른 뚜렷한 비만 표현형이 나타났다. 이러한 효과를 매개하는 분자적 기전을 규명하기 위해, 본 연구에서는 전신, 신경세포 특이적, 및 SIM1-발현 뉴런 특이적 CRBN 결손 마우스 모델에서 공통적으로 관찰된 비만 저항성이 실방핵에서의 섭식 조절에 관여하는 CRBN 기질 단백질의 안정성 변화에 기인할 것이라고 가정하였다. 특히, SIM1과 그 필수 이합체 파트너인 ARNT2에 주목하였는데, Sim1-Cre 마우스를 이용한 실방핵 특이적 CRBN 결손이 전신 결손과 같은 비만 저항성 표현형을 보였고, CRBN 단백질이 실방핵 내 뉴런 표지들 중 SIM1과 가장 강한 공발현 양상을 나타냈으며, 또한 CRBN-기질 결합 표적 약물 중 하나인 레날리도마이드가 ARNT2의 유비퀴틴화를 조절하는 것으로 보고된 바 있기 때문이다. SIM1과 ARNT2로 구성된 전사인자 복합체는 시상하부 실방핵 뉴런의 발달과 섭식 조절에 필수적인 요소로 알려져 있다. 세포 수준의 분석 결과, CRBN은 SIM1 및 ARNT2 단백질과 물리적으로 결합하며, 이 과정에서 두 단백질의 유비퀴틴화가 증가하고, 단백질 발현량이 감소하였다. 또한 CRBN 과발현은 SIM1/ARNT2 복합체의 이합체 형성, 핵 내 축적 및 DNA 결합성을 저하시켰으며, 탈리도마이드 처리에 의해 이러한 CRBN 의존적 변화가 모두 회복되었다. 나아가, Crbn 결손 마우스와 Sim1 반수체 마우스의 시상하부 실방핵 유전자를 비교 분석한 전사체 연구 결과, 두 모델에서 상반된 방향의 유전자 발현 양상이 관찰되었으며, 이는 CRBN과 SIM1이 공통된 전사 조절 경로를 공유하면서도 에너지 항상성 조절에 있어 상반된 전사적 영향을 미침을 시사하였다. 이러한 기전에 부합하게, SIM1 반수체 마우스에 탈리도마이드를 투여하였을 때 감소된 SIM1 유전자 발현에 의해 유도된 과식성 비만 표현형이 완화되었다. 종합하면, 본 연구는 CRBN이 시상하부 실방핵 뉴런 내 SIM1/ARNT2 전사인자 복합체의 번역 후 조절을 통해 에너지 섭취와 체중을 조절함을 규명하였다. 이를 통해 CRBN과 시상하부 섭식 회로 간의 새로운 분자적 연계를 제시하였으며, 약리학적 표적 단백질 또는 세포 스트레스 조절인자로 알려져 있던 CRBN의 생리적 기능적 범위를 확장하였다. 나아가 본 연구 결과는 시상하부를 매개로 한 에너지 항상성 조절의 새로운 분자 기전을 제시함과 동시에, CRBN-SIM1/ARNT2 축을 조절하는 기전이 에너지 과잉 상태에서 유발되는 비만을 완화하기 위한 잠재적 치료 전략으로 활용될 가능성을 시사한다. |
- |
| dc.description.tableofcontents | ABSTRACT i Statement of Contributions iii List of Contents iv List of Tables viii List of Figures ix List of Abbreviations xi Ⅰ. INTRODUCTION 1 1.1 Obesity as a disorder of energy balance 1 1.2 Hypothalamic regulation of food intake 3 1.2.1 Peripheral signals to hypothalamus 3 1.2.2 The melanocortin system 4 1.2.3 The paraventricular nucleus (PVN) of the hypothalamus 7 1.3 SIM1/ARNT2 transcription factor complex 8 1.3.1 Developmental and functional roles of SIM1/ARNT2 8 1.3.2 Role of SIM1 in energy intake and body weight regulation 9 1.3.3 ARNT2: heterodimer partner of SIM1 11 1.4 Cereblon (CRBN) 12 1.4.1 Molecular identity 12 1.4.2 Physiological implications 14 1.5 Rationale and objectives of the study 15 ⅠⅠ. MATERIALS AND METHODS 16 2.1 Mouse models 16 2.2 Metabolic phenotyping 16 2.2.1 Body weight and food intake 16 2.2.2 Body mass composition 17 2.2.3 Indirect calorimetry 17 2.2.4 Glucose tolerance test (GTT) & insulin tolerance test (ITT) 17 2.3 Drug and peptide administration 18 2.3.1 Pharmacological inhibition of CRBN by thalidomide 18 2.3.1.1 vehicle vs thalidomide 18 2.3.1.2 wild-type vs Crbn KO 18 2.3.1.3 Administration to Sim1 Het mice 18 2.3.2 Leptin injection 19 2.3.3 Melanotan II (MTII) injection 19 2.4 Stereotaxic AAV injection into PVN 19 2.4.1 AAV-Crbn production 19 2.4.2 Stereotaxic injection 20 2.5 Histology analysis of mouse tissues 20 2.5.1 Brain tissue 20 2.5.1.1 Cardiac perfusion and cryosectioning 20 2.5.1.2 Immunofluorescent staining 21 2.5.1.3 Colocalization analysis 21 2.5.2 Hematoxylin and Eosin (H&E) staining of liver and adipose tissues 22 2.6 Gene cloning and construct preparation 22 2.6.1 cDNA cloning for mouse Sim1 and Arnt2 constructs 22 2.7 Cell culture and treatments 22 2.7.1 Cell lines and culture conditions 22 2.7.2 Transfection 23 2.7.3 Thalidomide treatment 23 2.7.4 Palmitate treatment 23 2.8 Molecular and biochemical assays 24 2.8.1 Total protein extraction and western blotting 24 2.8.2 Nuclear and cytoplasmic fractionation 24 2.8.3 Immunoprecipitation (IP) 25 2.8.3.1 Co-immunoprecipitation 25 2.8.3.2 Ubiquitination assay 25 2.8.3.3 Crosslinking and endogenous IP 25 2.8.4 Chromatin immunoprecipitation (ChIP) 26 2.9 Luciferase assay 27 2.9.1 CRE luciferase assay after α-MSH stimulation 27 2.9.2 Luciferase assay after palmitate treatment 27 2.10 RNA isolation and real-time quantitative PCR (RT-qPCR) 28 2.11 Statistical analysis 28 2.12 RNA sequencing and bioinformatic analysis 29 2.12.1 single cell RNA sequencing (scRNA-seq) data analysis 29 2.12.2 bulk RNA sequencing 29 2.12.2.1 Sample preparation and RNA extraction 29 2.12.2.2 Library preparation and sequencing 30 2.12.2.3 Downstream transcriptomic and gene set enrichment analyses 31 2.13 Graphical illustration 31 ⅠⅠⅠ. RESULTS 32 3.1 CRBN deficiency confers resistance to diet-induced obesity 32 3.1.1 Metabolic phenotypes of Crbn knockout mice 32 3.1.2 Energy expenditure in Crbn KO mice 35 3.2 Adipose tissue-specific CRBN deletion does not alter metabolic phenotypes 38 3.2.1 CRBN expression in adipose tissues under high-fat diet 38 3.2.2 Metabolic phenotypes of adipocyte-specific Crbn KO (Crbn FKO) mice 39 3.2.3 Thermogenic gene expression in Crbn KO and adipocyte-specific KO mice 43 3.3 Pharmacological inhibition of CRBN reduces food intake and body weight 45 3.3.1 Metabolic effects of pharmacological inhibition of CRBN by thalidomide 45 3.3.2 Requirement of CRBN for thalidomide-induced reduction in feeding 45 3.4 Neuronal CRBN regulates energy intake and body weight 47 3.4.1 Metabolic phenotypes of neural lineage Crbn KO (Crbn NKO) mice under HFD 47 3.4.2 Hypothalamic CRBN expression under dietary challenge 51 3.4.3 Functional assessment of CRBN in ARC leptin signaling 52 3.4.4 Modulation of melanocortin receptor signaling in PVN neurons 55 3.5 PVN-specific CRBN regulates feeding behavior via SIM1 neurons 58 3.5.1 CRBN expression in PVN neurons with enrichment in Sim1-expressing populations 58 3.5.2 Gain of function: AAV-mediated Crbn overexpression in PVN neurons 63 3.5.3 Loss-of-function: Sim1-Cre-mediated Crbn deletion (Crbn SKO) in PVN neurons 67 3.6 CRBN destabilizes SIM1/ARNT2 transcription factor complex 73 3.6.1 Rationale for investigating SIM1/ARNT2 as CRBN targets 73 3.6.2 Destabilization of SIM1/ARNT2 proteins by CRBN 74 3.6.3 Suppression of SIM1/ARNT2 transcriptional activity by CRBN 78 3.7 Regulation of SIM1/ARNT2 activity by nutrient stress and CRBN inhibition 82 3.7.1 Impact of lipotoxic stress on SIM1/ARNT2 function 82 3.7.2 Alleviation of hyperphagic obesity in Sim1 Het mice by CRBN inhibition 84 3.8 Comparative transcriptomic analysis of Crbn KO and Sim1 Het PVN neurons 86 3.8.1 Rationale and overview of transcriptomic analyses 86 3.8.2 Transcriptomic profiles of Crbn KO and Sim1 Het PVN neurons 88 3.8.3 Comparative pathway analysis between Crbn KO and Sim1 Het transcriptomes 93 ⅠV. DISCUSSION 98 V. APPENDIX: Altered stress-induced feeding response in Crbn KO 110 5.1 Background 110 5.2 Methods 112 5.3 Results 113 5.3.1 Attenuated stress-induced feeding suppression in Crbn KO mice 113 5.3.2 CRH neuron-specific Crbn deletion does not affect stress-related feeding 115 5.4 Conclusion 117 REFERENCE 118 SUPPLEMENTARY INFORMATION 126 요약문 130 |
- |
| dc.format.extent | 131 | - |
| dc.language | eng | - |
| dc.publisher | DGIST | - |
| dc.title | Cereblon (CRBN) in the paraventricular nucleus of the hypothalamus regulates energy intake through modulation of SIM1/ARNT2 stability | - |
| dc.title.alternative | 시상하부실방핵의 Cereblon (CRBN)에 의한 SIM1/ARNT2 매개 에너지 섭취 조절 | - |
| dc.type | Thesis | - |
| dc.identifier.doi | 10.22677/THESIS.200000942220 | - |
| dc.description.degree | Doctor | - |
| dc.contributor.department | Department of New Biology | - |
| dc.contributor.coadvisor | Young-sam Lee | - |
| dc.date.awarded | 2026-02-01 | - |
| dc.publisher.location | Daegu | - |
| dc.description.database | dCollection | - |
| dc.citation | XT.ND 김56 202602 | - |
| dc.date.accepted | 2026-01-19 | - |
| dc.contributor.alternativeDepartment | 뉴바이올로지학과 | - |
| dc.subject.keyword | Cereblon, Paraventricular nucleus of the hypothalamus, Single-minded 1, Aryl hydrocarbon receptor nuclear translocator 2, feeding regulation | - |
| dc.contributor.affiliatedAuthor | Soojeong Kim | - |
| dc.contributor.affiliatedAuthor | Jaemin Lee | - |
| dc.contributor.affiliatedAuthor | Young-sam Lee | - |
| dc.contributor.alternativeName | 김수정 | - |
| dc.contributor.alternativeName | Jaemin Lee | - |
| dc.contributor.alternativeName | 이영삼 | - |
| dc.rights.embargoReleaseDate | 2028-02-28 | - |
File Downloads
- There are no files associated with this item.
공유
Total Views & Downloads
???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???:
