Detail View

IscU Metamorphosis: Molecular Basis and Pathogenic Implications

Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 김진해 -
dc.contributor.author Jongbum Na -
dc.date.accessioned 2026-01-23T10:53:56Z -
dc.date.available 2026-01-23T10:53:56Z -
dc.date.issued 2026 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59602 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000942324 -
dc.description Fe-S cluster biosynthesis, IscU, metamorphosis, NMR spectroscopy, protein dynamics -
dc.description.abstract 철-황 클러스터는 다양한 단백질에서 기능을 수행하는 필수적인 금속 보조인자로, 그 결핍은 암 및 대사질환을 포함한 여러 질환으로 이어진다. 철-황 클러스터는 IscU라 불리는 스캐폴드 단백질을 중심으로 여러 단백질 간 상호작용을 통해 생합성된다. 흥미롭게도, IscU는 하나의 아미노산 서열로부터 안정적인 두 가지 이상의 구조를 형성할 수 있는 metamorphic 단백질로 알려져 있다. 따라서 IscU는 구조적으로 안정한 S-상태와 비정형적인 D-상태 간의 가역적인 전환을 통해 동적인 평형 상태를 유지한다. 이러한 metamorphic 평형은 pH, 온도 등의 환경적 요인뿐만 아니라 리간드 및 파트너 단백질과의 상호작용에 의해서도 민감하게 조절된다. 그러나 IscU의 metamorphosis가 어떠한 분자적 기작에 의해 조절되는지, 그리고 이러한 조절이 철-황 클러스터 생합성 과정에서 어떤 역할을 하는지는 아직 명확히 밝혀지지 않았다. 이에 본 연구에서는 NMR을 포함한 다양한 생분광학적 분석을 통해 IscU의 metamorphosis 조절 기작을 세 가지 측면에서 규명하였다.
첫째, IscU의 유연한 N-말단 루프가 용액 상태에서 metamorphic 평형 조절에 핵심적인 역할을 함을 규명하였다. NMR 및 다양한 생분광학적 분석을 통해, N-말단 루프 내 α1 모티프의 일시적인 나선 형성과 Y3 잔기의 소수성이 S-상태와 D-상태 간의 평형 조절에 기여함을 밝혔다.
둘째, IscU 근병증을 유발하는 G18E와 G64V 치환 돌연변이가 IscU의 metamorphic 평형을 교란함을 확인하였다. 특히 G18E 변이는 S-상태를 불안정화하여 D-상태를 상대적으로 안정화시키는 반면, G64V 변이는 S-상태를 극적으로 안정화시켰다. 또한 용액 NMR 분석을 통해 G64V 변이 단백질의 구조를 결정하였으며, 그 결과 용액 상태에서 N-말단 루프가 안정화되고 α1 모티프에 안정적인 나선 구조가 형성됨을 확인하였다.
셋째, 아직 명확히 규명되지 않은 D-상태의 구조를 밝히기 위해 변성제 요소(urea)를 이용하여 완전히 풀린 U-상태와 비교 분석하였다. 그 결과, D-상태는 α5 모티프 부근에서 부분적으로 안정화된 나선 구조를 형성함을 규명하였다.
요약하면, 본 연구는 (1) IscU의 N-말단 영역이 metamorphic 평형을 조절하는 분자적 기작을 제시하고, (2) 질환 관련 돌연변이가 metamorphic 평형을 교란하는 분자적 원인을 규명하며, (3) D-상태의 구조적 특성을 새롭게 제시하였다. 본 연구는 철-황 클러스터 생합성 과정에서 IscU 단백질의 metamorphosis가 어떻게 조절되는지를 규명함으로써, metamorphic 단백질이 환경 변화와 돌연변이에 따라 구조적 평형을 재조정하는 분자적 원리를 제시하였다. 이러한 결과는 metamorphic 단백질의 구조-기능 상관관계와 질환 관련 구조의 metamorphic 불균형에 대한 새로운 통찰을 제공한다.
|Iron-sulfur (Fe-S) clusters are essential metallocofactors that function in diverse enzymes. Consequently, Fe-S cluster deficiency is associated with various pathological conditions, including cancer and metabolic diseases. The biosynthesis of Fe-S clusters requires interactions among multiple proteins within the iron-sulfur cluster (ISC) system. Among these, IscU functions as a scaffold protein that provides a platform for Fe-S cluster assembly through dynamic interactions with its partner proteins. Interestingly, IscU is classified as a metamorphic protein, which interconverts in dynamic equilibrium between a structured (S) state and a disordered (D) state. This metamorphic equilibrium of IscU directly affects the interactions of its partner proteins within the ISC system and is highly sensitive to environmental perturbations. Therefore, experimental conditions, such as pH, salt concentration, and temperature, are crucial in studies of IscU, as they can alter the relative populations of the S- and D-states. Notably, structural discrepancies in the N-terminal loop have been observed between the X-ray crystallographic model and the solution NMR structure. This thesis aims to elucidate the structural mechanisms underlying the metamorphosis of Escherichia coli IscU through three complementary studies. First, this study investigated the correlation between the flexible N-terminal loop of IscU and the modulation of the metamorphic equilibrium of IscU. By employing advanced NMR methodologies suitable for analyzing protein dynamics, in combination with other bio-spectroscopic analysis, the study demonstrated that the hydrophobicity of residue Y3 and the transient formation of the α1 helix within the N-terminal loop are critical in modulating the equilibrium between the S- and D-states. Second, this study examined how the missense mutations G18E and G64V, that cause IscU-myopathy in humans, perturb IscU’s structural and functional properties. The IscU G18E variant destabilized the S-state, thereby increasing the population of the D-state and leading to dysregulated interactions with partner proteins in the ISC system. In contrast, the structure of the IscU G64V variant, determined by solution NMR spectroscopy, revealed that the mutation stabilized the α1 helix and reinforced the S-state, again interfering with its partner-protein interactions. Third, this study sought to characterize the structural features of the D-state, which has remained enigmatic, among the metamorphic states of IscU. Although the D-state is generally characterized as disordered, it functions as an essential intermediate for binding to one of IscU’s partner proteins, HscA. By using urea, this study distinguished the structural differences between the partially disordered D-state and the fully unfolded U-state. Collectively, this thesis provides mechanistic insights into (i) the molecular basis of IscU’s metamorphic equilibrium, (ii) the metamorphic changes induced by disease-associated mutations, and (iii) the elusive conformational characteristics of the D-state. Overall, these findings advance our understanding of the structural plasticity and functional regulation underlying Fe-S cluster biogenesis.
-
dc.description.tableofcontents Ⅰ. Introduction 1
1.1 The importance of the Fe-S cluster in biological systems 1
1.1.1 The functions of the Fe-S cluster in biological systems 1
1.1.2 Fe-S cluster proteins and functional diversity 1
1.1.3 The [2Fe-2S] cluster biosynthesis mechanism 2
1.2 The IscU protein 6
1.2.1 Metamorphosis of IscU protein 6
1.2.2 Pathological implications of Fe-S cluster and IscU dysfunction 6
ⅠI. Modulation of the Disordered N-Terminal Loop of IscU for Metamorphosis 8
2.1 Introduction 8
2.2 Methods and Materials 10
2.2.1 AF-cluster and statistical coupling analysis (SCA) 10
2.2.2 Multiple sequence alignment 10
2.2.3 Protein preparation 10
2.2.4 Far-UV circular dichroism (CD) spectroscopy 12
2.2.5 Size-exclusion chromatography (SEC) 12
2.2.6 Nuclear magnetic resonance (NMR) spectroscopy 12
2.2.7 Paramagnetic relaxation enhancement (PRE) measurement 13
2.2.8 Peptide titration experiment 17
2.2.9 Isothermal titration calorimetry (ITC) 17
2.2.10 Size-exclusion chromatography with multi-angle light scattering (SEC-MALS) 17
2.3 Results and Discussions 18
2.3.1 Structural heterogeneity of the N-terminal loop of IscU 18
2.3.2 Functional role of Y3 of IscU in maintaining the metamorphic equilibrium 21
2.3.3 Impact of the α1-helix on the structural and functional diversity of IscU 25
2.3.4 Role of IscU’s N-terminal region in Fe-S cluster biogenesis 32
2.4 Conclusion 34
ⅠII. Disease-Associated Missense Mutations and Metamorphic Regulation of IscU 35
3.1 Introduction 35
3.2 Methods and Materials 36
3.2.1 Multiple sequence alignment of IscU orthologs 36
3.2.2 Protein preparation 36
3.2.3 NMR spectroscopy 36
3.2.4 Far-UV CD spectroscopy 37
3.2.5 ITC 37
3.2.6 Directed-coupling analysis (DCA) 38
3.2.7 Analytical SEC 38
3.2.8 NMR structure determination of the IscU G64V variant 39
3.2.9 Contact map analysis based on PDB 39
3.3 Results and Discussions 40
3.3.1 Correlation between IscU missense mutations and metamorphosis 40
3.3.2 D-state stabilization by G18E 44
3.3.3 S-state stabilization by IscU G64V 47
3.3.4 Effect of S-state stabilization by IscU G64V on partner protein interactions 53
3.4 Conclusion 56
ⅠV. Structural Characterization of the D-state of IscU 57
4.1 Introduction 57
4.2 Methods and Materials 57
4.2.1 Protein preparation 57
4.2.2 Intrinsic tryptophan fluorescence spectroscopy 58
4.2.3 Far-UV CD spectroscopy 58
4.2.4 NMR spectroscopy 58
4.3 Results and Discussions 59
4.3.1 Conformational transition of IscU D-state to U-state under denaturing condition 59
4.3.2 NMR characterization of the D-state to U-state transition under denaturing conditions 63
4.3.3 Comparison of secondary structure and dynamics between D-state and U-state of IscU 66
4.4 Conclusion 70
V. Future work 71
References 73
국문 요약문 81
-
dc.format.extent 82 -
dc.language eng -
dc.publisher DGIST -
dc.title IscU Metamorphosis: Molecular Basis and Pathogenic Implications -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.200000942324 -
dc.description.degree Doctor -
dc.contributor.department Department of New Biology -
dc.contributor.coadvisor Chang-Hun Lee -
dc.date.awarded 2026-02-01 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.ND 나75 202602 -
dc.date.accepted 2026-01-19 -
dc.contributor.alternativeDepartment 뉴바이올로지학과 -
dc.subject.keyword Fe-S cluster biosynthesis, IscU, metamorphosis, NMR spectroscopy, protein dynamics -
dc.contributor.affiliatedAuthor Jongbum Na -
dc.contributor.affiliatedAuthor Jin-Hae Kim -
dc.contributor.affiliatedAuthor Chang-Hun Lee -
dc.contributor.alternativeName 나종범 -
dc.contributor.alternativeName Jin-Hae Kim -
dc.contributor.alternativeName 이창훈 -
dc.rights.embargoReleaseDate 2030-02-28 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: