Detail View

Design of Highly Stable and High Performance Membranes for Alkaline Zinc-Iron Redox Flow Batteries
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Design of Highly Stable and High Performance Membranes for Alkaline Zinc-Iron Redox Flow Batteries
Alternative Title
알칼리 아연-철 산화환원 흐름 전지를 위한 고안정성 고성능 분리막 설계
DGIST Authors
Minji KimSangaraju ShanmugamDong Hae Ho
Advisor
상가라쥬 샨무감
Co-Advisor(s)
Dong Hae Ho
Issued Date
2026
Awarded Date
2026-02-01
Type
Thesis
Description
Redox flow battery, Alkaline zinc-iron redox flow batteries, Negatively-charged membrane, Zn deposition, Enhanced durability
Abstract

알칼리 아연-철 산화환원 흐름 전지(AZIFBs)는 높은 에너지 밀도, 저렴한 비용, 풍부한 소재, 그리고 우수한 안전성으로 인해 대규모 에너지 저장 시스템의 유망한 후보로 주목받고 있다. 그러나 실용화를 위해서는 아연 수지상 결정 형성과 분리막을 통한 활물질 크로스오버라는 핵심 과제를 해결해야 한다. 이러한 문제들은 내부 단락, 용량 감소, 사이클 안정성 저하를 초래하며, 기존 분리막들은 과도한 활물질 크로스오버 또는 가혹한 알칼리 환경에서의 심각한 열화를 겪는다.
본 논문에서는 이러한 문제를 해결하기 위해 두 가지 혁신적인 분리막 전략을 제시한다.: (1) 술폰화 폴리(에테르 에테르) 케톤/폴리설폰(SPK/PS) 블렌드 분리막과 (2) 술폰화 폴리(에테르 에테르) 케톤/티타늄산 칼슘(SPK/CTO) 복합 분리막. 두 접근법 모두 음전하를 띤 술폰산기와 징케이트 이온 간의 정전기적 반발력을 활용하여 아연 수지상 결정 형성을 억제하면서, 각기 다른 메커니즘으로 분리막의 내구성과 전기화학적 성능을 향상시킨다.
SPK/PS 블렌드 분리막은 폴리설폰의 도입으로 향상된 치수 안정성, 개선된 알칼리 저항성, 우수한 기계적 강도 및 제어된 이온 전달 특성으로 AZIFB 사이클 평가에서 80%의 SoC에서 89.0%의 에너지 효율로 안정적인 성능을 보였으며 순수 SPK이 작동하지 못한100% SoC에서도 작동하였다. 80 mA cm-2의 전류밀도에서 700 사이클동안 80.0%의 에너지 효율을 유지하였으며, SPK 대비 현저히 낮은 과전압을 나타냈다. 또한, 사후 분석 결과, SPK/PS 분리막은 구조적 완전성을 유지하고 상대적으로 균일한 아연 증착을 나타내었다.
SPK/금속 티타네이트 복합 분리막은 전기장 조절을 위한 높은 유전 특성을 활용하여 개발되었다. 다양한 금속 티타네이트 중에서 티타늄산 칼슘(CTO)이 Zn-Fe RFB 시스템에서 88.5%의에너지 효율로 가장 우수한 성능을 보였다. 최적화된 SPK/CTO 복합 분리막은 향상된 치수 안정성과 유지된 이온 전도도 사이의 최적 균형을 나타내며 80 mA cm-2의 전류밀도에서 900 사이클동안 9.6%의 낮은 에너지 효율 감소를 보이며 뛰어난 안정성을 나타내었다. 또한, SPK/CTO 분리막은 균일하고 조밀한 육각형 아연 판상 결정을 형성한 반면, 순수 SPK 분리막은 날카로운 구조의 수지상 아연 성장을 나타내었다. 이러한 아연의 전기화학적 증착의 변화는 수계 아연 이온 배터리에서도 검증되었다.
두 분리막의 전략은 서로 다르지만 상호 보완적인 메커니즘을 통해 알칼리 아연 기반 흐름 전지의 핵심 과제를 성공적으로 해결하였다. 이러한 개발은 그리드 규모 아연 기반 에너지 저장 시스템을 위한 상업적으로 실현 가능하고 내구성 있는 분리막 소재로서의 중요한 발전을 나타내며, 이 기술의 적용을 제한해왔던 근본적인 장벽을 극복하는 실질적인 방법을 제시한다.|Alkaline zinc-iron redox flow batteries (AZIFBs) have emerged as promising candidates for large-scale energy storage due to their high energy density, low cost, abundant materials, and inherent safety features. However, their practical implementation faces critical challenges, primarily zinc dendrite formation and active material crossover through the membrane, which lead to internal short circuits, capacity fade, and poor cycling stability. These challenges are fundamentally linked to membrane performance, as conventional membranes either exhibit excessive active species crossover or suffer from severe degradation under harsh alkaline conditions. This thesis presents two innovative membrane strategies to address these challenges: (1) sulfonated poly (ether ether) ketone/polysulfone (SPK/PS) blend membranes and (2) sulfonated poly(ether ether) ketone/calcium titanate (SPK/CTO) composite membranes. Both approaches leverage the electrostatic repulsion between negatively charged sulfonic groups and zincate ions to suppress zinc dendrite formation while implementing distinct mechanisms to enhance membrane durability and electrochemical performance. The SPK/PS blend membranes were developed by incorporating hydrophobic polysulfone into the SPEEK matrix. The degree of sulfonation of SPEEK was optimized, with 70% DS exhibiting the highest energy efficiency of 85.1%. The incorporation of polysulfone provided multiple synergistic benefits, including enhanced dimensional stability, improved alkaline resistance, superior mechanical strength, and controlled ion transport kinetics. In AZIFB cycling tests, the SPK/PS-10 membrane exhibited stable performance with 89.0% energy efficiency at 80% SoC and maintained operation at 100% SoC where pristine SPEEK failed catastrophically. Long-term stability tests over 700 cycles at 80 mA cm-2 demonstrated that SPK/PS-10 retained 80.0% of its energy efficiency, with significantly lower overpotential (429 mV vs. 608 mV for SPEEK at the 450th cycle). Post-mortem analysis revealed SPK/PS-10 membrane maintained structural integrity and promoted relatively uniform zinc deposition, while pristine SPEEK developed large pores and severe zinc dendrite formation on electrode surfaces. The SPK/metal titanate composite membranes were explored to leverage high dielectric properties for electric field regulation. Among CaTiO3, SrTiO3, and BaTiO3, calcium titanate(CaTiO3, CTO) demonstrated superior performance in Zn-Fe RFB systems, achieving 88.5% energy efficiency. The optimized SPK/CTO-1.5 composite membrane exhibited dramatically suppressed Fe(CN)6 4- permeability, superior alkaline stability, and maintained ion exchange capacity at optimal loadings. Electrochemical evaluation revealed that SPK/CTO-1.5 demonstrated an optimal balance between enhanced dimensional stability and maintained ionic conductivity. Long-term cycling over 900 cycles at 80 mA cm-2 exhibited SPK/CTO 1.5wt% membrane maintained exceptional stability with only 9.6% energy efficiency degradation (from 87.7% to 78.1%), while pristine SPK exhibited catastrophic degradation (74.7% loss). SPK/CTO membranes promoted uniform, compact hexagonal zinc platelets through electric field regulation and enhanced dimensional stability, while pristine SPK membrane promoted severe dendritic zinc growth with sharp structures, as shown in the post-mortem analysis. This fundamental alternation of zinc electrochemistry was validated across multiple zinc-based systems. In aqueous zinc-ion battery symmetric cells, SPK/CTO membrane demonstrated stable cycling over 30,000 minutes without short circuits with lower nucleation overpotential (127 mV vs. 162 mV for SPK), with SPK/CTO consistently promoting hexagonal platelet growth versus progressive dendrite in SPK systems. Both membrane strategies successfully address the critical challenges of alkaline zinc-based flow batteries through distinct but complementary mechanisms. These developments represent significant advancements toward commercially viable, durable membrane materials for grid-scale zinc-based energy storage systems, demonstrating practical pathways to overcome the fundamental barriers that have limited widespread deployment of this promising technology.

더보기
Table Of Contents
Ⅰ. Introduction
1.1 Theoretical Background 1
1.2 Redox Flow Batteries (RFBs) 2
1.3 Challenges in Zn-Fe RFBs 4
1.3.1 Zn Dendrite Formation 6
1.3.2 Active Material Crossover 10
1.4 Strategies for the challenges of Zn/Fe RFBs 15
1.5 Motivation and goal of this dissertation 17
1.5.1 Sulfonated Polymer-Based Membrane 17
1.5.2 Modification of Sulfonated Polymer Membrane 18

Ⅱ. Experiment
2.1 Materials 21
2.2 Preparation of sulfonated poly (ether ether) ketone 21
2.3 Preparation of Metal Titanate (XTiO3, X= Ca, Sr, Ba) 22
2.3.1 Synthesis of Potassium Hexatitanate (K2Ti6O13) 22
2.3.2 Synthesis of Metal Titanates 22
2.3.3 Synthesis of Calcium Titanate (CaTiO3) without K2Ti6O13 23
2.4 Membrane Preparation 23
2.4.1 SPK/PS blend membrane 23
2.4.2 SPK/CTO composite membrane 24
2.5 Characterization 24
2.6 Water Uptake, Swelling Degree· 25
2.7 Ion Permeability 25
2.8 Ion Conductivity and Selectivity 26
2.9 Measurements of Zn-Fe RFB Performance 27

Ⅲ. Highly Stable Polymer Blend Membrane for Alkaline Zn-Fe RFBs
3.1 Introduction 28
3.2 Results and Discussion 29
3.2.1 Characterization 29
3.2.2 Alkaline Zn-Fe RFB Performance 39
3.3 Summary 52

Ⅳ. Zn Dendrite Suppression through High Dielectric Constant Material Composite Membrane for Alkaline Zn-Fe RFBs
4.1 Introduction 53
4.2 Results and Discussion 54
4.2.1 Characterization 54
4.2.2 Alkaline Zn-Fe RFB Performance 71
4.2.3 Application in Aqueous Zinc Ion Batteries 80
4.3 Summary 87

Ⅴ. Conclusion 89
Reference 91
국문 요약문 97
URI
https://scholar.dgist.ac.kr/handle/20.500.11750/59677
http://dgist.dcollection.net/common/orgView/200000947476
DOI
10.22677/THESIS.200000947476
Degree
Master
Department
Department of Energy Science and Engineering
Publisher
DGIST
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads