Detail View

A Study on the Ce-substituted Nd-Fe-B Magnets Fabricated by Melt Spinning and pressure-assisted sintering
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
A Study on the Ce-substituted Nd-Fe-B Magnets Fabricated by Melt Spinning and pressure-assisted sintering
Alternative Title
용융 방사 및 압력 보조 소결을 통해 제조된 Ce 치환 Nd-Fe-B 자석에 관한 연구
DGIST Authors
Jung Woo HaDong Hwan KimJeongmin Kim
Advisor
김동환
Co-Advisor(s)
Jeongmin Kim
Issued Date
2026
Awarded Date
2026-02-01
Type
Thesis
Description
Nd-Fe-B magnets, Ce substitution, melt spinning, Spark plasma sintering, hot pressing, wheel speed, α-Fe, coercivity(Hcj), maximum energy product ((BH)max)
Abstract

Nd-Fe-B magnet offers the best performance among commercial permanent magnets. Nevertheless, their rare-earth basis entails limited reserves and significant price volatility. To mitigate the resource and cost constraints associated with Nd-Fe-B magnets, 30 wt.% of Neodymium (Nd) was replaced with Cerium (Ce). The reason why Ce was selected as a partial substitute for Nd because of its higher reserves and lower cost, thereby enhancing resource security and cost efficiency. However, when Nd in Nd-Fe-B is partially replaced by Ce, lowered magnetocrystalline anisotropy and increased soft-magnetic phase formation led to performance deterioration, it limits the commercial viability of Ce-substituted magnets. The composition and manufacturing process design of magnets to improve these performance deterioration factors, and the changes in the microstructure and magnetic properties of magnets were investigated. The composition was set to Nd21.84Ce9.36Co4.03Ga0.53Fe63.36B0.98 wt.% to minimize performance degradation caused by the formation of REFe2 phases in soft magnetic properties. In addition, to prevent decrease in magnetic properties caused by excessive RE-rich phases, the rare-earth content was partially reduced compared with that in the conventional process. In the case of the process, a button cell alloy was manufactured through arc melting, and then a melt-spun ribbon with nanometer-level grain was manufactured by melt spinning. Subsequently, based on the ribbon, short-time pressure-assisted sintering was performed through spark plasma sintering (SPS) and hot pressing to induce grain refinement and suppress grain growth to improve magnetic properties. As the rare-earth composition in the initial alloy decreased compared with that in the conventional process, the α-Fe phase formed. α-Fe phase formation was maximized as the sintering temperature increased. In addition, as the α-Fe phase formation increased, the magnetic properties decreased accordingly. In addition, higher magnetic properties were confirmed along with low α-Fe formation in hot pressing compared to the SPS based on the same sintering temperature. Because of the low rare-earth composition ratio set during the initial alloy preparation, α-Fe formed. This behavior was strongly influenced by the subsequent sintering temperature. In addition, considering that the extent of α-Fe formation and the associated decrease in magnetic properties were more pronounced in SPS, it can be concluded that the actual sintering temperature in SPS is higher. This research suggests that to inhibit the formation of the α-Fe phase, it is necessary to adjust the rare-earth ratio during the initial composition design and to optimize the sintering temperature. These results will serve as the basis for setting the process design and performance improvement direction of Ce-substituted magnets in the future.|본 논문은 Ce 치환 Nd-Fe-B 자석 제조를 통한 비용 저감 달성과 동시에 Ce 치환 시 동반되는 자석의 자기적 성능 저하 개선을 다룬다. Nd-Fe-B 자석의 조성 중 Nd의 30 wt.%를 Ce으로 치환하였을 때, 자석의 이방성 저하, 연자성 소재의 형성 등으로 인하여 자기적 성능의 저하가 발생하여 Ce 치환 자석의 상용화에 방해요소로 작용한다. 이러한 성능 저하의 방지 및 해결을 위한 자석의 조성 및 제조 공정 개선, 이에 따른 자석의 미세구조와 자기적 성능의 변화를 체계적으로 규명하였다. 조성의 경우 Nd21.84Ce9.36Co4.03Ga0.53Fe63.36B0.98 wt.%으로 Ce 치환을 통한 비용 절감 및 연자성상인 REFe2 형성으로 인한 성능 저하의 최소화를 목적으로 설정하였다. 동시에 RE-rich 상의 과도한 형성으로 인한 자기적 특성의 억제를 유도하고자 상대적으로 적은 비율의 희토류 조성을 설정하였다. 공정의 경우 arc melting을 통해 button cell 합금을 제조 후 melt spinning으로 소결 목적의 분말로 사용되는 melt-spun ribbon을 제작하였다. 해당 이후 spark plasma sintering(SPS)과 hot pressing을 통해 단시간 소결을 수행하여 결정립 미세화 및 성장을 억제함으로써 자기적 성능 향상을 유도하였다. 제조한 자석은 이후 XRD, SEM, VSM 그리고 B-H tracer 등의 장비를 사용하여 조성, 미세구조, 자기적 특성 분석을 진행하였다. 실험에 사용한 melt-spun ribbon의 경우 melt spinning 공정 중 wheel speed가 증가할수록 미세 결정립과 비정질 상의 비중이 많아지며 자기적 성능이 향상되었다. 하지만 리본의 품질이 저조해지는 경향을 보였던 점을 고려하여 미세한 결정립을 보유하였으며 동시에 균질한 리본을 제조할 수 있는 wheel speed 15 m/s를 표준 조건으로 채택하였다. Wheel speed 10 m/s 리본의 경우 결정립의 과도한 성장으로 인하여 소결과정에서 치밀화가 이루어지지 않는 점을 고려하여 대상에서 제외하였다. SPS 기준 소결 온도 750 °C 영역에서 자석을 제조하였을 때 REFe2와 동일한 연자성 상인 α-Fe의 과도한 형성과 함께 자기적 성능이 저하되었다. 이러한 α-Fe 상은 이후 소결 온도가 감소할수록 (650 °C,700 °C), 동일 온도 기준 SPS 대비 hot pressing 공정에서 형성이 억제되는 경향을 확인할 수 있었으며 보자력(Hcj)과 최대자기에너지적((BH)max)의 향상 또한 확인할 수 있었다. 즉 소결 온도가 증가함에 따라 α-Fe 상의 형성이 활성화된다. 또한 줄 발열을 통해 소결을 진행하는 SPS가 유도가열을 통해 소결을 진행하는 hot pressing과 비교하여 동일 설정 온도 기준 실제 소결 온도가 더욱 높으며 상대적으로 많은 α-Fe 상을 형성하게 되는 점 또한 확인할 수 있었다. 본 연구는 자석의 성능 향상을 위해 α-Fe 상의 형성 억제가 핵심임을 시사하며, 해결 방안으로 소결 온도 조정을 제안한다. 이러한 결과는 향후 Ce 치환 자석의 공정 설계와 성능 향상 방향 설정을 위한 근거로 작용할 것이다.

더보기
Table Of Contents
I. Introduction
1.1 Development and classification of permanent magnets 1
1.2 Properties parameters of permanent magnets 4
1.2.1 Hysteresis loop 4
1.2.2 Maximum energy product((BH)max) 6
1.2.3 Squareness factor 6
1.2.4 Curie temperature 8
1.2.5 Grain structure of Nd-Fe-B permanent magnets 10
1.2.6 Coercivity mechanism of Nd-Fe-B permanent magnets 13
1.3 Enhancement of magnetic performance and economic limitations through heavy rare-earth element addition 16
1.4 Advances and key findings in Ce-substituted (LRE) Nd-Fe-B magnets 18
1.5 Economic advantages and magnetic performance degradation associated with Ce substitution 19
II. Experimental procedure
2.1 Fabrication of Ce-substituted Nd-Fe-B alloy 21
2.1.1 Arc melting 21
2.1.2 Melt spinning 26
2.1.3 Hand grinding 29
2.2 Fabrication of sintered bodies 30
2.2.1 Spark plasma sintering 30
2.2.2 Hot pressing 33
2.3 Characterization and analysis 35
2.3.1 X-ray diffractometer (XRD) analysis 35
2.3.2 Scanning electron microscopy (SEM) analysis 37
2.3.3 Vibrating-sample magnetometer (VSM) analysis 39
2.3.4 B–H Tracer Analysis 39
III. Results and discussions
3.1 Optimization of melt-spun ribbon conditions 41
3.1.1 XRD analysis of melt-spun ribbons 42
3.1.2 SEM analysis of melt-spun ribbons 45
3.1.3 VSM analysis of melt-spun ribbons 48
3.2 Analysis of magnetic properties and microstructure as a function of SPS and hot pressing processes 50
3.2.1 SPSed magnet-analysis across wheel-speed conditions 50
3.2.1.1 XRD analysis of SPSed magnets 50
3.2.1.2 SEM-BSE analysis of SPSed magnets 50
3.2.1.3 B-H tracer analysis of SPSed magnets 50
3.2.2 SPSed magnet-analysis by sintering temperature 53
3.2.2.1 XRD analysis of SPSed magnets 53
3.2.2.2 SEM analysis of SPSed magnets 53
3.2.2.3 B-H tracer analysis of SPSed magnets 53
3.2.3 Hot-pressed magnet-analysis by sintering temperature 58
3.2.3.1 XRD analysis of hot-pressed magnets 58
3.2.3.2 SEM analysis of hot-pressed magnets 58
3.2.3.3 B-H tracer analysis of hot-pressed magnets 58
IV. Conclusions 64
V. reference 66
VI. 요약문 71
URI
https://scholar.dgist.ac.kr/handle/20.500.11750/59721
http://dgist.dcollection.net/common/orgView/200000947162
DOI
10.22677/THESIS.200000947162
Degree
Master
Department
Interdisciplinary Engineering Major
Publisher
DGIST
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads