Detail View

A Diffusion-Based Framework for Configurable and Realistic Storage Trace Generation
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 김예성 -
dc.contributor.author Seohyun Kim -
dc.date.accessioned 2026-01-23T10:57:01Z -
dc.date.available 2026-01-23T10:57:01Z -
dc.date.issued 2026 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59723 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000942224 -
dc.description Diffusion Models, Storage Systems, Block I/O Traces, Synthetic Data, System Benchmark -
dc.description.tableofcontents Ⅰ. Introduction 1
ⅠI. Background and Motivation 4
2.1 Lack of Real-world Traces 4
2.2 Limitations of Traditional Trace Generation Tools 5
2.3 Feasibility of Probabilistic Modeling 6
2.4 Limitations of Configuration-Based Simulation 8
2.5 Generative Models for Trace Generation 9
IⅠI. Overview of DiTTO 11
IV. Overview of STAMP 13
V. Detailed Method of STAMP 15
5.1 Data Pre-processing 15
5.1.1 Hierarchical Clustered Address Encoding 15
5.1.2 Uniform Feature Embedding 16
5.1.3 Hyper-configuration Labeling 17
5.2 Latent Representation Learning 18
5.3 CHIP : Contrastive Hyper-configuration and I/O trace Pre-training 22
5.4 Configuration-Guided Latent Denoising with U-Net 24
5.5 Inference 26
VI. Evaluation 28
6.1 Experimental Setup 28
6.2 Evaluation of DiTTO 29
6.3 Evaluation of STAMP 30
VII. Future Work 32
VIII. Conclusion 34
-
dc.format.extent 38 -
dc.language eng -
dc.publisher DGIST -
dc.title A Diffusion-Based Framework for Configurable and Realistic Storage Trace Generation -
dc.title.alternative 구성 가능하고 현실적인 스토리지 트레이스 생성을 위한 확산 기반 프레임워크 -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.200000942224 -
dc.description.degree Master -
dc.contributor.department Artificial Intelligence Major -
dc.date.awarded 2026-02-01 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.AM 김54 202602 -
dc.date.accepted 2026-01-19 -
dc.contributor.alternativeDepartment 학제학과인공지능전공 -
dc.subject.keyword Diffusion Models, Storage Systems, Block I/O Traces, Synthetic Data, System Benchmark -
dc.contributor.affiliatedAuthor Seohyun Kim -
dc.contributor.affiliatedAuthor Yeseong Kim -
dc.contributor.alternativeName 김서현 -
dc.contributor.alternativeName Yeseong Kim -
dc.rights.embargoReleaseDate 2031-02-28 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads