Detail View

Design of Phase-Interpolator-Based Muller-Mueller Clock and Data Recovery for High-Speed Wireline

Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 김가인 -
dc.contributor.author Seongjin Kim -
dc.date.accessioned 2026-01-23T10:57:10Z -
dc.date.available 2026-01-24T06:00:45Z -
dc.date.issued 2026 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59727 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000942504 -
dc.description High-speed wireline, clock and data recovery, ADC-based CDR, Muller-Mueller CDR -
dc.description.abstract This thesis presents the modeling, design, and hardware verification of an analog-to-digital converter (ADC)-based Mueller–Muller clock and data recovery (MMCDR) system utilizing a phase interpolator (PI) for high-speed wireline receivers. Behavioral modeling was conducted using MATLAB and XMODEL to analyze the loop dynamics and phase-detector characteristics of the MMCDR. Through PI code-sweep and jitter- tolerance (JTOL) simulations, the phase-detector polarity and gain were characterized, confirming stable timing-lock behavior with a 3-dB tracking bandwidth of approximately 6 MHz. For hardware verification, the MMCDR architecture was implemented on a radio-frequency system-on-chip (RFSoC) platform (ZCU111). A sampling-phase-sweep technique was developed by introducing a small frequency offset between an arbitrary waveform generator (AWG) and the ADC sampling clock, enabling phase-dependent measurements without modifying the on-board clocking network. The implemented clock-path digital signal processing (DSP) block, consisting of a feed-forward equalizer (FFE) and a Mueller–Muller phase detector (MMPD), was evaluated using on-chip signal observation through the integrated logic analyzer (ILA). Measured results closely matched simulation data: the four-level pulse-amplitude-modulated (PAM-4) MMPD exhibited multiple false-lock points, while the two-level non-return-to-zero (NRZ)-like configuration achieved a single monotonic zero- crossing, indicating improved linearity and stability. These results validate the proposed modeling and hardware verification framework, demonstrating its effectiveness for next-generation ADC-based clock and data recovery systems in high-speed wireline transceivers. Keywords: ADC-based CDR, Mueller–Muller phase detector, phase interpolator, RFSoC, jitter tolerance, high- speed wireline receiver.|본 논문에서는 고속 유선 송수신기에서 사용되는 ADC(Analog-to-Digital Converter) 기반 뮐러-뮐러 클록 및 데이터 복원(MMCDR; Mueller–Muller Clock and Data Recovery) 시스템을 설계하고, 위상 보간기(PI; Phase Interpolator) 를 이용한 타이밍 복원 기법을 제안하였다.
제안된 CDR 구조는 MATLAB 및 XMODEL을 이용하여 동작 특성과 루프 동역학을 모델링하였으며, PI 코드 스윕 시뮬레이션과 지터 톨러런스(JTOL; Jitter Tolerance) 분석을 통해 위상 검출기의 극성과 이득 특성을 평가하였다.
그 결과, 약 6 MHz의 3 dB 트래킹 대역폭을 가지며 안정적인 락킹(locking) 동작을 확인하였다. 하드웨어 검증은 ZCU111 RFSoC(Radio-Frequency System-on-Chip) 플랫폼을 기반으로 수행되었다. AWG(Arbitrary Waveform Generator) 와 ADC 간의 주파수 오프셋을 인가하여 샘플링 위상을 연속적으로 변화시키는 샘플링 위상 스윕(phase-sweep) 기법을 적용함으로써, 보드 클록 회로를 수정하지 않고도 위상 의존적 응답을 측정할 수 있었다.
RFSoC 내부에 구현된 클록 경로 DSP(Digital Signal Processing) 블록은 FFE(Feed-Forward Equalizer) 와 MMPD(Mueller–Muller Phase Detector) 로 구성되었으며, ILA(Integrated Logic Analyzer) 를 통해 내부 신호를 관찰하였다. 측정 결과, PAM-4 MMPD의 경우 복수의 위상 락 포인트(false lock)가 나타났으며, NRZ 유사 구조에서는 단일 단조형 제로 교차(zero-crossing) 특성이 관찰되어 위상 선형성과 안정성이 향상됨을 확인하였다.
이를 통해 제시된 모델링 및 검증 방법론이 ADC 기반 CDR 시스템의 효율적인 설계 및 하드웨어 검증에 유용함을 입증하였다.
-
dc.description.tableofcontents List of Contents
Abstract i
List of Contents ii
List of Figures vi
List of Tables v

Ⅰ. Introduction 1
1.1 Background and Motivation 1
1.2 Thesis Organization 2

ⅠⅠ. Background of ADC-Based MMCDR 4
2.1 Clock and Data Recovery Fundamentals 4
2.2 ADC-based MMCDR Architecture 6
2.2.1 Analog to Digital Converter and Time Interleaved-ADC 7
2.2.2 Clock and Data Recovery Feed Forward Equalizer 8
2.2.3 Mueller–Muller Phase Detector 9
2.2.4 Digital Loop Filter 10
2.2.5 Phase Interpolator 11
III. Modeling and Simulation of the ADC-Based MMCDR 13
3.1 Behavioral Modeling 13
3.1.1 Behavioral Modeling Overview 13
3.1.2 Modeled CDR Architecture 15
3.2 PI Code Sweep Simulation 19
3.2.1 PI Code Sweep Simulation Setup 19
3.2.2 PI Code Sweep Simulation Results 20
3.3 Jitter Tolerance Test 21
3.3.1 Fundamentals of Jitter Tolerance 21
3.3.2 JTOL Simulation Results 22
IV. Hardware Implementation and Experimental Verification 24
4.1 Experimental Setup and Verification Platform 24
4.2 Implementation of Clock Path DSP and Verification Architecture 27
4.2.1 System Architecture and Hardware Configuration 27
4.2.2 Clock Path DSP Implementation 28
4.2.3 Serial Interface and Parameter Control 29
4.3 Phase Detector Implementation and Measurement Results 29
4.3.1 Implementation of the Mueller–Muller Phase Detector 29
4.3.2 Measured PD Output Characteristics 31
V. Conclusion 33
VI. Future Works 34
-
dc.format.extent 37 -
dc.language eng -
dc.publisher DGIST -
dc.title Design of Phase-Interpolator-Based Muller-Mueller Clock and Data Recovery for High-Speed Wireline -
dc.title.alternative PAM-4 유선 송수신기를 위한 뮐러-뮐러 클록 및 데이터 복원 회로 설계 -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.200000942504 -
dc.description.degree Master -
dc.contributor.department Artificial Intelligence Major -
dc.date.awarded 2026-02-01 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.AM 김541 202602 -
dc.date.accepted 2026-01-19 -
dc.contributor.alternativeDepartment 학제학과인공지능전공 -
dc.subject.keyword High-speed wireline, clock and data recovery, ADC-based CDR, Muller-Mueller CDR -
dc.contributor.affiliatedAuthor Seongjin Kim -
dc.contributor.affiliatedAuthor Gain Kim -
dc.contributor.alternativeName 김성진 -
dc.contributor.alternativeName Gain Kim -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: